Dark energy is a theoretical repulsive energy that causes the acceleration to the expansion of the universe. Among the choices, the nearest answer would be D. Dark energy can also be defined as a new form of energy, that is a dynamic field that fills up space but has an effect opposite to that of normal energy.
Answer:
Explanation:
In this case, law of conservation of energy will be implemented. It states that "the energy of the system remains conserved until or unless some external force act on it. Energy of the system may went through the conversion process like kinetic energy into potential and potential into kinetic energy.But their total always remain the same in conserved systems."
Given data:
Height of tower = 10.0 m
Depth of the pool = 3.00 cm
Mass of person = 61.0 kg
Solution:
Initial energy = Final energy

As the person was at height initially so it has the potential energy only.



Lets find out the magnitude of the force that the water is exerting on the diver.
W =ΔK.E


F = 1992.67 N
Answer:
Amplitude—distance between the resting position and the maximum displacement of the wave
Frequency—number of waves passing by a specific point per second
Period—time it takes for one wave cycle to complete
wavelength λ - the distance between adjacent identical parts of a wave, parallel to the direction of propagation.
Tension - described as the pulling force transmitted axially by the means of a string, a cable, chain, or similar one-dimensional continuous object, or by each end of a rod, truss member, or similar three-dimensional object
Answer:
(a) 17.37 rad/s^2
(b) 12479
Explanation:
t = 95 s, r = 6 cm = 0.06 m, v = 99 m/s, w0 = 0
w = v / r = 99 / 0.06 = 1650 rad/s
(a) Use first equation of motion for rotational motion
w = w0 + α t
1650 = 0 + α x 95
α = 17.37 rad/s^2
(b) Let θ be the angular displacement
Use third equation of motion for rotational motion
w^2 = w0^2 + 2 α θ
1650^2 = 0 + 2 x 17.37 x θ
θ = 78367.87 rad
number of revolutions, n = θ / 2 π
n = 78367.87 / ( 2 x 3.14)
n = 12478.9 ≈ 12479
Yes, an increase in temperature is accompanied by an increase in pressure. Temperature is the measurement of heat present and more heat means more energy. Molecules in hotter temperatures move faster and more often, eventually moving into the gaseous phase. The molecules would fill the container, and the hotter it got the more they would bounce off the walls, pushing outward, increasing the pressure.
I suppose you could measure this with some kind of loosely inflated balloon and subject it to different temperatures and then somehow measure the size/pressure of it.