The answer would be metal
<h2>Answer:</h2>
Arrangement of inter molecular forces from strongest to weakest.
- Hydrogen bonding
- Dipole-dipole interactions
- London dispersion forces.
<h3>Explanation:</h3>
Intermolecular forces are defined as the attractive forces between two molecules due to some polar sides of molecules. They can be between nonpolar molecules.
Hydrogen bonding is a type of dipole dipole interaction between the positive charge hydrogen ion and the slightly negative pole of a molecule. For example H---O bonding between water molecules.
Dipole dipole interactions are also attractive interactions between the slightly positive head of one molecule and the negative pole of other molecules.
But they are weaker than hydrogen bonding.
London dispersion forces are temporary interactions caused due to electronic dispersion in atoms of two molecules placed together. They are usually in nonpolar molecules like F2, I2. they are weakest interactions.
Answer is: the average atomic mass is 232.
ω₁ = 20% ÷ 100%.
ω₁ = 0.20.
ω₂ = 80% ÷ 100%.
ω₂ = 0.80.
Ar₁ = 120 (number of protons) + 120 (number of neutrons).
Ar₁ = 240.
Ar₂ = 120 + 110
.
Ar₂ = 230.
Average atomic mass of atoms of bolognium =
Ar₁ · ω₁ + Ar₂ · ω₂.
Average atomic mass of atoms of bolognium = 240 · 0.2 + 230 · 0.8.
Average atomic mass of atoms of bolognium = 48 + 184.
Average atomic mass of atoms of bolognium = 232.
Glucose is the simplest sugar and carbohydrate that provides energy. The simplified model of glucose (C₆H₁₂O₆) shows carbon, hydrogen, and oxygen atoms linked together.
<h3>What is glucose?</h3>
Glucose is an example of a carbohydrate macromolecule that is further classified as a monosaccharide. They are crystalline and fundamental units of carbohydrates.
The molecular formula of glucose is C₆H₁₂O₆ and the mass is 180.156 g/mol. It is an aldohexose that contains an aldehydic functional group. In its structure, there are six oxygen atoms, six carbon atoms, and twelve hydrogen atoms.
Therefore, the glucose molecule is composed of C, H, and O.
Learn more about glucose here:
brainly.com/question/2396657
#SPJ1