If Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).
<h3>
What is base dissociation constant?
</h3>
The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.
The dissociation reaction of hydrogen cyanide can be given as
HCN --- (H+) + (CN-)
Given,
The value of Ka for HCN is 2.8× 10^(-9)
The correlation between base dissociation constant and acid dissociation constant is
Kw = Ka × Kb
Kw = 10^(-14)
Substituting values of Ka and Kw,
Kb = 10^(-14) /{2.8×10^(-9) }
= 3.5× 10^(-6)
Thus, we find that if Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).
DISCLAIMER: The above question have mistake. The correct question is given as
Question:
Given that Ka for HBrO is 2. 8×10^−9 at 25°C. What is the value of Kb for BrO− at 25°C?
learn more about base dissociation constant:
brainly.com/question/9234362
#SPJ4
Percentage by volume of solution is the percentage volume of solute in total volume of solution.
Volume percentage (v/v%) = volume of solute / total volume of solution x 100%
volume of solute - 16.0 mL
total volume of solution - 155 mL
v/v% = 16.0 / 155 x 100% = 10.32%
this means that in a volume of 100 mL solution, 10.32 mL is acetone.
Answer:
900 K
Explanation:
Recall the ideal gas law:

Because only pressure and temperature is changing, we can rearrange the equation as follows:

The right-hand side stays constant. Therefore:

The can explodes at a pressure of 90 atm. The current temperature and pressure is 300 K and 30 atm, respectively.
Substitute and solve for <em>T</em>₂:

Hence, the temperature must be reach 900 K.
Answer:
The correct answer is:
<em>(1) It is important that the sample is dissolved in just enough hot solvent. </em>
Explanation:
The process of recrystallization is important to eliminate the impurities and to obtain better crystals of the solid. The solvent used to perform the recrystallization must have a high dissolution power of the substance to be recrystallized and a low dissolution power of the impurities. This is in order to eliminate most impurities. Furthermore, <em>It is important that the sample is dissolved in just enough hot solvent </em>because this should be easy to remove after the recrystallization and the crystal should form easily when the solution cools. Also, it is better to add the hot solvent to solubilize the crystals and keep the impurities insoluble, instead of adding the cold solvent and heating the solution. Additionally, the process of cooling the solution must be done slowly to obtain large and fewer crystals. A fast ice-cooling will form smaller crystals.
Answer:
h2+O ---> H2O
reactants: H2 & O
products: H2O
Explanation:
The simple reaction that produces a water molecule from H2 and O would be the one written above, even though there are 2 hydrogen molecules, they will form an H2 molecule rather than 2 individual H molecules (almost never seen) the reactants would be your hydrogen and oxygen molecules individually before they bond to form a molecule of water (H2O) which is the product