Hey there!
Ca + H₃PO₄ → Ca₃(PO₄)₂ + H₂
Balance PO₄.
1 on the left, 2 on the right. Add a coefficient of 2 in front of H₃PO₄.
Ca + 2H₃PO₄ → Ca₃(PO₄)₂ + H₂
Balance H.
6 on the left, 2 on the right. Add a coefficient of 3 in front of H₂.
Ca + 2H₃PO₄ → Ca₃(PO₄)₂ + 3H₂
Balance Ca.
1 on the right, 3 on the right. Add a coefficient of 3 in front of Ca.
3Ca + 2H₃PO₄ → Ca₃(PO₄)₂ + 3H₂
Our final balanced equation:
3Ca + 2H₃PO₄ → Ca₃(PO₄)₂ + 3H₂
Hope this helps!
Which eclipse was modeled when the large ball was between the small ball and the light?
The model is a "Lunar Eclipse" (If it was talking about the earth, then yes, it is a lunar eclipse).
<u> </u>
Which eclipse was modeled when the small ball was between the large ball and the light?
The model is a "Solar Eclipse".
<u> </u>
What does the large ball represent?
The earth.
<u> </u>
What does the small ball represent?
The moon.
<u> </u>
What does the light source represent?
The sun.
Hope this helps!~ <3
(I can't draw so sorry.)
<u />
The water molecules received enough energy through the heat for them to change to a liquid state by unfixing themselves from their fixed positions.
Answer:
As you go down a group on the periodic table, you get more electron shells and therefore a larger atomic radius.
The Answer Is D I just Did The Quiz And It Said It Was Right