Answer:
lead ii nitrate is the answer
Before the bullet is fired the momentum is Zero because nothing is moving but once the bullet is shot the momentum increases because of the movement of the bullet moving forward.
Answer:
(a)

(b)

Explanation:
Hello,
(a) In this case, as the reaction is second-ordered, one uses the following kinetic equation to compute the concentration of NOBr after 22 seconds:
![\frac{1}{[NOBr]}=kt +\frac{1}{[NOBr]_0}\\\frac{1}{[NOBr]}=\frac{0.8}{M*s}*22s+\frac{1}{0.086M}=\frac{29.3}{M}\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BNOBr%5D%7D%3Dkt%20%2B%5Cfrac%7B1%7D%7B%5BNOBr%5D_0%7D%5C%5C%5Cfrac%7B1%7D%7B%5BNOBr%5D%7D%3D%5Cfrac%7B0.8%7D%7BM%2As%7D%2A22s%2B%5Cfrac%7B1%7D%7B0.086M%7D%3D%5Cfrac%7B29.3%7D%7BM%7D%5C%5C)
![[NOBr]=\frac{1}{29.2/M}=0.0342M](https://tex.z-dn.net/?f=%5BNOBr%5D%3D%5Cfrac%7B1%7D%7B29.2%2FM%7D%3D0.0342M)
(b) Now, for a second-order reaction, the half-life is computed as shown below:
![t_{1/2}=\frac{1}{k[NOBr]_0}](https://tex.z-dn.net/?f=t_%7B1%2F2%7D%3D%5Cfrac%7B1%7D%7Bk%5BNOBr%5D_0%7D)
Therefore, for the given initial concentrations one obtains:

Best regards.
Answer:
773.43 torr
Explanation:
From the question given above, the following data were obtained:
Pressure (in inHg) = 30.45 inHg
Pressure (in torr) =?
We can convert 30.45 inHg to torr by doing the following:
1 inHg = 25.4 torr
Therefore,
30.45 inHg = 30.45 inHg × 25.4 torr / 1 inHg
30.45 inhg = 773.43 torr
Thus, 30.45 inhg is equivalent to 773.43 torr