Below are the choices that can be found elsewhere:
A. (4.9 × 10-14 newtons) · tan(30°)
<span>B. (4.9 × 10-14 newtons) · sin(30°) </span>
<span>C. (4.9 × 10-14 newtons) · cos(30°) </span>
<span>D. (4.9 × 10-14 newtons) · arctan(30°) </span>
<span>E. (4.9 × 10-14 newtons) · arccos(30°)
</span>
<span>Force is proportional to the angle made by the velocity with respect to the magnetic field. It is maximum when velocity is perpendicular to the magnetic field and minimum when the velocity is parallel to the magnetic field. It is proportional to sin of the angle. In this problem it will be proportional to sin(30)</span>
Answer:
Option B. 5 nC
Explanation:
From the question given above, the following data were obtained:
Capicitance (C) = 100 pF
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Next, we shall convert 100 pF to Farad (F). This can be obtained as follow:
1 pF = 1×10¯¹² F
Therefore,
100 pF = 100 pF × 1×10¯¹² F / 1 pF
100 pF = 1×10¯¹⁰ F
Next, we shall determine the quantity of charge. This can be obtained as follow:
Capicitance (C) = 1×10¯¹⁰ F
Potential difference (V) = 50 V
Quantity of charge (Q) =?
Q = CV
Q = 1×10¯¹⁰ × 50
Q = 5×10¯⁹ C
Finally, we shall convert 5×10¯⁹ C to nano coulomb (nC). This can be obtained as follow:
1 C = 1×10⁹ nC
Therefore,
5×10¯⁹ C = 5×10¯⁹ C × 1×10⁹ nC / 1 C
5×10¯⁹ C = 5 nC
Thus, the quantity of charge is 5 nC
Answer:
Also 3s.
Explanation:
Each component is independent in two dimensional motion. This means that <em>how much time does something take to reach the ground when dropped is independent from any horizontal velocity</em>. If at one run a drop lasts 3s, at another run with twice the (horizontal) velocity and same height will also last 3s, no matter what.