Answer:
Torque decreases .
Explanation:
The tape is pulled at constant speed , speed v is constant , so there is
v = ω r where ω is angular speed and r is radius , As radius decreases , angular speed ω increases , So there is angular acceleration .
Let it be α . Let I be moment of inertia of reel .
Reel is in the form of disc
I = 1/2 m r²
I x α = torque
1/2 m r² x α = torque
As the reel is untapped , its mass decreases , r also decreases , so torques also decreases .
For this problem, we would be using the formula: Vf^2 = Vi^2 + 2ad
where:
Vf = 400m/s
Vi = 300m/s
a = ?
d = 4.0km
= 4000m
400^2 = 300^2 + 2a4000
a = [ 160000 - 90000 ] / 8000
a = 8.75m/s^2
rounding it off to 2 significant figures, will give us 8.8 m/s^2.
Answer:
Refraction
Explanation:
When light passes from a rarer medium into a denser medium, it bends in the medium away from the normal. This creates the phenomenon of "apparent depth" as given in the question.
When you talk about Hooke's law, it always have to do something with springs. Hooke's Law, from Robert Hooke, saw a relation between the force applied to the spring and the extension of its length. The equation is: F = kx, where k is the spring constant and x is the displacement of the original and stretched lengths. In other words, x is the length of deformation. Hence, the object must be elastic to come up with a displacement or deformation, in the first place. Then, the Hooke's Law is only applicable to elastic materials.