Answer:
Explanation:
Firstly, we have to define momentum.
Momentum is define as the product of mass and velocity.
That is P = mass×velocity
Also considering the third law of motion which states that: For every action, there is equal and opposite reaction.
Moreso, considering the 2nd law of motion which states that the rate of change in the momentum of a body is equal to the applied force and takes place in the direction of the applied force.
Now, applying P = mass×velocity
They both have same mass and velocity definitely, they will both experience same momentum.
Also from the question, the both share same velocity hence, the will both hit the wall with same velocity meaning the will both feel the same impact from the wall as well. Hence the third law of motion proves this right.
<h2>Right answer: It follows a curved path
</h2>
The movement of a projectile is a movement in two dimensions (forming a curved path: a parabola shape) with <u>constant acceleration.
</u>
<u>
</u>
A projectile is any body or object that is thrown or projected by means of some force and continues in motion by its own inertia. This means the only force that acts on it while in motion is <u>the acceleration of gravity</u> (in this case we are on Earth, so the gravity value is
).
Where gravity influences the <u>vertical movement</u> of the projectile, while <u>the horizontal movement</u> of the projectile is the result of the tendency of any object to remain in motion at a constant speed (according to Newton's 1st law of motion sometimes called Law of Inertia).
The other options are <u>incorrect</u> because are <u>false</u>:
-The forward motion negates air resistance: There is always at least a small percent of air resistance, as long as that movement is done on Earth.
-It has variable acceleration: In projectile motion acceleration is constant (gravity acceleration)
.
-It is unaffected by gravity: The only force that acts on the projectile is due gravity.
<span>Neo and Morpheus's masses have gained a velocity (not equal to zero) which means their momentum is now based on gravity and friction alone.</span>
Scobie will take 10 days to drive around Earth's equator.
To calculate the time that takes Scobie to drive around Earth's equator we need to find the distance, which is given by the equation of a circumference:

<em>Where:</em>
r: is the Earth's radius = 6371 km
Then, the distance is:

Now, if we divide the above distance by the speed of the car we can find the time:

Therefore, Scobie will take 10 days to drive around Earth's equator.
To learn more about distance and time here: brainly.com/question/14236800?referrer=searchResults
I hope it helps you!
Answer:
the second one i guess????
Explanation: