Lower flammable limit means the lowest concentration of a material that will propagate a flame.
What is hazardous atmosphere?
It is an atmosphere that may expose employees to risk of death, incapacitation, impairment of ability to self-rescue, injury, or acute illness from one or more of following causes
- Flammable gas, vapor, or mist in excess of 10 percent of lower flammable limit (LFL)
- Airborne combustible dust at concentration that meets or exceeds its LFL
What is lower flammable limit?
- It means the lowest concentration of a material that will propagate a flame.
- The LFL is usually expressed as percent by volume of material in air (or other oxidant)
- Atmospheres with concentration of flammable vapors at or above 10 percent of lower explosive limit (LEL) are considered hazardous when located in confined spaces.
- However, atmospheres with flammable vapors below 10 percent of LEL are not necessarily safe. Such atmospheres are too lean to burn
Learn more about lower flammable limit at brainly.com/question/2456135
#SPJ4
Answer:
The equation to show the the correct form to show the standard molar enthalpy of formation:

Explanation:
The standard enthalpy of formation or standard heat of formation of a compound is the change of enthalpy during the formation of 1 mole of the substance from its constituent elements, with all substances in their standard states.
Given, that 1 mole of
gas and 1 mole of
liquid gives 2 moles of HBr gas as a product.The reaction releases 72.58 kJ of heat.

Divide the equation by 2.

The equation to show the the correct form to show the standard molar enthalpy of formation:

Answer:
semiconducting,tellurium
Explanation:
just completed the assignment
C) Sliver Carbonate AgCO3
<h3>
Answer:</h3>
3.5 Newton
<h3>
Explanation:</h3>
We are given;
Mass of the ball = 140 g
Acceleration = 25 m/s²
Required to find the force;
- According to Newton's second law of motion, the resultant force on a body in motion and the rate of change in linear momentum are directly proportional.
- That is;

- Thus; F = ma , where F is the resultant force, m is the mass and a is the acceleration.
To get the force we substitute the value of m and a in the formula;
Therefore;
F = 0.14 kg × 25 m/s²
= 3.5 N
Hence, the force needed to accelerate the ball is 3.5 N