Answer: D is the answer since it is the product of this equation
Explanation: HOPE I AM RIGHT AND IT HELPS!!!
need more explanation feel free to comment in the comment box
<span>a) 7.9x10^9
b) 1.5x10^9
c) 3.9x10^4
To determine what percentage of an isotope remains after a given length of time, you can use the formula
p = 2^(-x)
where
p = percentage remaining
x = number of half lives expired.
The number of half lives expired is simply
x = t/h
where
x = number of half lives expired
t = time spent
h = length of half life.
So the overall formula becomes
p = 2^(-t/h)
And since we're starting with 1.1x10^10 atoms, we can simply multiply that by the percentage. So, the answers rounding to 2 significant figures are:
a) 1.1x10^10 * 2^(-5/10.5) = 1.1x10^10 * 0.718873349 = 7.9x10^9
b) 1.1x10^10 * 2^(-30/10.5) = 1.1x10^10 * 0.138011189 = 1.5x10^9
c) 1.1x10^10 * 2^(-190/10.5) = 1.1x10^10 * 3.57101x10^-6 = 3.9x10^4</span>
The moving of molecules from areas of high concentration to that of low concentration to gain energy is best described as passive transport
<h3>What is passive transport?</h3>
Passive transport is a type of membrane transport in which chemicals are moved across cell membranes without using energy. Unlike active transport, which uses cellular energy, passive transport uses the second law of thermodynamics to cause the movement of substances across cell membranes.
<h3>Why is passive transport important?</h3>
Passive transport processes are critical to homeostasis. They maintain proper conditions inside the cell and the organism as a whole by letting chemicals to pass into and out of the cell.
To know more about Passive transport visit:
brainly.com/question/13542102
#SPJ4
Sucrose, a sweet, white crystalline substance, C12 H22 O11, OBTAINED CHIEFLY FROM THE JUICE OF THE SUGAR CANE AND SUGAR BEET, BUT ALSO PRESENT IN SORGHUM, THE sugar maple, some palms, and various other plants, and having extensive nutritional, pharmaceutical, and industrial uses; any of the class of carbohydrates to which this substance belongs, as glucose, levulose, and lactose.