B) a rock being tossed high into the air
The color of light that a star emits is somewhat related to its age, whereas the color of light that we actually <em>observe</em> from a star is related to the speed at which it's moving with respect to us.
Answer:
6) False
7) True
8) False
9) False
10) False
11) True
12) True
13) True
14) True
Explanation:
The spacing between two energy levels in an atom shows the energy difference between them. Clearly, B has a greater value of ∆E compared to A. This implies that the wavelength emitted by B is greater than A while B will emit fewer, more energetic photons.
When atoms jump from lower to higher energy levels, photons are absorbed. The kinetic energy of the incident photon determines the frequency, wavelength and colour of light emitted by the atom.
The energy level to which an atom is excited is determined by the kinetic energy of the incident electron. As the voltage increases, the kinetic energy of the electron increases, the further the atom is from the source of free electrons, the greater the required kinetic energy of free electron. When electrons are excited to higher energy levels, they must return to ground state.
Answer:
c.
Explanation:
Initial velocity of cheetah,u=1 m/s
Time taken by cheetah =4.8 s
Final velocity of cheetah,v=28 m/s
We have to find the acceleration of this cheetah.
We know that
Acceleration,
Where v=Final velocity of object
u=Initial velocity of object
t=Time taken by object
Using the formula
Then, we get
Acceleration, a=
Acceleration=
Hence, the acceleration of cheetah=