Using Newton's Second Law, we can find the air resistance. We know the net force is equal to mass times acceleration.
-- Momentum is (mass) x (speed).
Object B has 1.5 times as much momentum as Object A has.
-- Kinetic energy is (1/2) x (mass) x (speed) .
Object B has 1.5 times as much kinetic energy as Object A has.
-- If they would both stop long enough to get on the scale,
Object B would weigh 1.5 times as much as Object A does.
Answer:
2 m/s and -2 m/s
Explanation:
The object travels with an angle of
60.0°
with the positive direction of the y-axis: this means that it lies either in the 1st quadrant (positive x) or in the 2nd quadrant (negative x).
If it lies in the 1st quadrant, the value of vx (component of v along x direction) is:

If it lies in the 2nd quadrant, the value of vx (component of v along x direction) is:

The answer is c. Hope that helped
The net force on an object subject to friction is equal to the sum of the applied force and the frictional force.
Mathematically,

Here, m is mass of object and a is its acceleration. We take frictional force negative because it opposes the motion of object.
Given,
,
and 
Substituting these values in above formula, we get
.
Thus, the acceleration of an object is 