Answer:
C. 14.93 m
Explanation:
The given frequency of the wave, f = 100 Hz
The given equation for the wave speed, <em>v</em>, is presented as follows;
v = f × λ
The speed of sound in water, v = 1,493 m/s
Therefore, we get;
The wavelength, λ = v/f
∴ λ = 1,493 m/s/(100 Hz) = 14.93 m
The wavelength, λ = 14.93 m.
Answer:
The current is reduced to half of its original value.
Explanation:
- Assuming we can apply Ohm's Law to the circuit, as the internal resistance and the load resistor are in series, we can find the current I₁ as follows:

- where Rint = r and RL = r
- Replacing these values in I₁, we have:

- When the battery ages, if the internal resistance triples, the new current can be found using Ohm's Law again:

- We can find the relationship between I₂, and I₁, dividing both sides, as follows:

- The current when the internal resistance triples, is half of the original value, when the internal resistance was r, equal to the resistance of the load.
Answer:
The change in volume is 
Solution:
As per the question:
Coefficient of linear expansion of Copper, 
Initial Temperature, T =
= 273 K
Final Temperature, T' =
= 273 + 100 = 373 K
Now,
Initial Volume of the block, V = 



where
V' = Final volume


heat released Q = 749 joules
heat of fusion of silver L = 109 J/g
Here phase of silver is changing from liquid to solid
so temperature will remain same
all heat will be released due to its phase change
and in this case we use Q=mL
where m is the mass of silver in gram
Q= mL
749 = m * 109
m = 749/109
m = 6.87 gram