1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
avanturin [10]
3 years ago
6

Can someone please help me because this is a hard problem to solve.

Physics
1 answer:
ivolga24 [154]3 years ago
7 0

Answer:

25.0 m / 10 m/s = 2.5 s

50.0 / 9.5 = 5.26 s

25.0 / 11.1 = 2.25 s

T (Wood) = 2.5 + 5.26 + 2.25 = 10.0 s

Mrs Wood runs 10 s vs 10.4 for Mr Overstreet

You might be interested in
Vector e is 0.111m long in a 90 deg direction. Vector f is 0.233 m long in 400 deg direction. Find the direction of their vector
-BARSIC- [3]

Answer:

50.6

Explanation:

7 0
3 years ago
A wheel rotates with a constant angular acceleration of  rad/s2. During a certain time interval its angular displacement is  r
Hatshy [7]

Answer:

The angular velocity at the beginning of the interval is \pi\sqrt{2}\ rad/s.

Explanation:

Given that,

Angular acceleration \alpha=\pi\ rad/s^2

Angular displacement \theta=\pi\ rad

Angular velocity \omega =2\pi\ rad/s

We need to calculate the angular velocity at the beginning

Using formula of angular velocity

\alpha =\dfrac{\omega^2-\omega_{0}^2}{2\theta}

\omega_{0}^2=\omega^2-2\alpha\theta

Where, \alpha = angular acceleration

\omega = angular velocity

Put the value into the formula

\omega_{0}^2=(2\pi)^2-2\times\pi\times\pi

\omega=\sqrt{2\pi^2}

\omega_{0}=\pi\sqrt{2}\ rad/s

Hence, The angular velocity at the beginning of the interval is \pi\sqrt{2}\ rad/s.

3 0
3 years ago
WILL GIVE BRAINLIEST TO CORRECT ANSWER PLEASE HELP ME
koban [17]

Answer:

The total distance is 381.5 [m]

Explanation:

In order to solve this problem we must use the expressions of kinematics. The clue to solve this problem is that the motorcyclist starts from rest, i.e. its initial speed is zero.

v_{f} =v_{o} +(a*t)

where:

Vf = final velocity [m/s]

Vo = initial velocity = 0

a = acceleration = 2 [m/s²]

t = time = 7 [s]

Vf = 0 + (2*7)

Vf = 14 [m/s]

With this velocity, we can calculate the displacement using the following expression.

v_{f} ^{2} =v_{o} ^{2} +2*a*x

where

x = distance traveled [m]

14² = 0 + (2*7*x)

x = 196/(14)

x = 14 [m]

Note: The positive sign in the equations is because the car is accelerating, it means its velocity is increasing.

The other important clue to solve this problem in the second part is that the final velocity is now the initial velocity.

We must calculate the final velocity.

v_{f}= v_{i} +(a*t)

Vf = final velocity [m/s]

Vi = initial velocity = 14 [m/s]

a = desacceleration = 4 [m/s²]

t = time = 8 [s]

Vf = 24 + (4*8)

Vf = 56 [m/s]

With this velocity, we can calculate the displacement using the following expression.

v_{f} ^{2} =v_{o} ^{2} +2*a*x

where

x = distance traveled [m]

56² = 14² + (2*4*x)

x = 2940/(8)

x = 367.5 [m]

Note: The positive sign in the equations is because the car is accelerating, it means its velocity is increasing.

Therefore the total distance is Xt = 14 + 367.5 = 381.5 [m].

4 0
3 years ago
An instrument is thrown upward with a speed of 15 m/s on the surface of planet X where the acceleration due to gravity is 2.5 m/
Katen [24]
<h2>Answer: 12 s</h2>

Explanation:

The situation described here is parabolic movement. However, as we are told <u>the instrument is thrown upward</u> from the surface, we will only use the equations related to the Y axis.

In this sense, the main movement equation in the Y axis is:

y-y_{o}=V_{o}.t-\frac{1}{2}g.t^{2}    (1)

Where:

y  is the instrument's final position  

y_{o}=0  is the instrument's initial position

V_{o}=15m/s is the instrument's initial velocity

t is the time the parabolic movement lasts

g=2.5\frac{m}{s^{2}}  is the acceleration due to gravity at the surface of planet X.

As we know y_{o}=0  and y=0 when the object hits the ground, equation (1) is rewritten as:

0=V_{o}.t-\frac{1}{2}g.t^{2}    (2)

Finding t:

0=t(V_{o}-\frac{1}{2}g.t^{2})   (3)

t=\frac{2V_{o}}{g}   (4)

t=\frac{2(15m/s)}{2.5\frac{m}{s^{2}}}   (5)

Finally:

t=12s

3 0
3 years ago
In which direction does the sun appear to move across the sky
blsea [12.9K]

Answer:east

Explanation:Earth rotates or spins toward the east, and that's why the Sun, Moon, planets, and stars all rise in the east and make their way westward across the sky.

6 0
3 years ago
Read 2 more answers
Other questions:
  • Steam undergoes an adiabatic expansion in a piston–cylinder assembly from 100 bar, 360°C to 1 bar, 160°C. What is work in kJ per
    5·1 answer
  • Which of the answers shows three examples of a physical change
    8·1 answer
  • A 500.0-g chunk of an unknown metal, which has been in boiling water for several minutes, is quickly dropped into an insulating
    9·1 answer
  • While walking past a construction site, a person notices a pipe sticking out of a second floor window with water pouring out. As
    9·1 answer
  • A ball is thrown from 1 m above the ground. The initial velocity is 20 m/s at an angle of 40 degrees above the horizontal. What
    14·1 answer
  • ____ is the study of things getting faster as they move.
    5·2 answers
  • The wind blows a leaf at 37.9 m/s for 118 s left. How are does the leaf go in that period of time.
    14·1 answer
  • What is a charge? how objects can be charged? short answer pls​
    9·1 answer
  • Assuming you exert a constant force on the wagon, how fast is it moving after 5 seconds?
    6·1 answer
  • It's a frightening idea, but what would be the sound intensity level of 100 physics professors talking simultaneously
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!