The acceleration of the particle at time t is:

The velocity of the particle at time t is given by the integral of the acceleration a(t):

and the position of the particle at time t is given by the integral of the velocity v(t):

Assuming the particle starts from position x(0)=0 at t=0, the distance the particle covers in the first t=2 seconds can be found by substituting t=2 s in the equation of x(t):
Answer:
387 volts
Explanation:
Ohm's law is used to relate voltage, current and resistance.
The formula is as follows:V = I * R
where:
V is the applied voltage (measured in volts)
I is the current flowing (measured in amperes)
R is the resistance (measured in ohm)
In the given, we have:
current (I) = 9 amperes
resistance (R) = 43 ohm
Substitute with the givens in the above formula to get the voltage as follows:
V = 9 * 43
V = 387 volts
Hope this helps :)
Answer:
The answer is "
"
Explanation:
The formula for velocity:


<h3>
Answer: 104.5 cubic cm</h3>
=======================================================
Work Shown:
r = radius = 1.045 cm
h = height = 30.48 cm
pi = 3.141 approximately
V = volume of cylinder
V = pi*r^2*h
V = 3.141*(1.045)^2*30.48
V = 104.547940002
V = 104.5 cubic cm
I’m pretty sure you times them so 1 with A, 2 with e, 3 with C, and 4 with B