Answer:
weight at height = 100 N .
Explanation:
The problem relates to variation of weight due to change in height .
Let g₀ and g₁ be acceleration due to gravity , m is mass of the object .
At the surface :
Applying Newton's law of gravitation
mg₀ = G Mm / R²
At height h from centre
mg₁ = G Mm /h²
Given mg₀ = 400 N
400 = G Mm / R²
400 = G Mm / (6400 x 10³ )²
G Mm = 400 x (6400 x 10³ )²
At height h from centre
mg₁ = 400 x (6400 x 10³ )²/ ( 2 x 6400 x 10³)²
= 400 / 4
= 100 N .
weight at height = 100 N
Answer:
The electric current in the wire is 0.8 A
Explanation:
We solve this problem by applying the formula of the magnetic field generated at a distance by a long and straight conductor wire that carries electric current, as follows:

B= Magnetic field due to a straight and long wire that carries current
u= Free space permeability
I= Electrical current passing through the wire
a = Perpendicular distance from the wire to the point where the magnetic field is located
Magnetic Field Calculation
We cleared (I) of the formula (1):
Formula(2)

a =8cm=0.08m

We replace the known information in the formula (2)

I=0.8 A
Answer: The electric current in the wire is 0.8 A
Answer:
an astronomer studies planets, stars, moons, etc, or objects that are outside the field of Earth.
An example of a a predator in the Ethiopian Highlands ecosystem is the
Wolf.The wolf is a carnivore which acts as a predator to other smaller
animals in the ecosystem.
<h3>What is a Prey?</h3>
Preys are mostly smaller animals in which the predators feed on for food.
They are usually herbivores and primary consumers in the ecosystem.
Examples of Preys include:
Read more about Feeding relationship here brainly.com/question/9852437
"Gamma rays" is the name that we call the shortest of all electromagnetic waves. They're shorter than radio waves, microwaves, infrared waves, heat waves, visible light waves, ultraviolet waves, and X-rays. They extend all the way down to waves that are as short as the distance across an atom.
Being so short, they carry lots of energy. They can penetrate many materials, and they can damage living cells and DNA. They're dangerous.
The sun puts out a lot of gamma radiation. The atmosphere (air) filters out a lot of it, otherwise there couldn't even be any life on Earth.
As soon as astronauts fly out of the atmosphere, they need a lot of shielding from gamma rays.
You know the precautions we take when we're around X-rays. The same precautions apply around gamma rays, only a lot more so.
It's only in the past several years that we've learned how to MAKE gamma rays without blowing things up. Also, how to control them, and how to use them for medical and industrial applications.