Yo, I assumed that this situation occurs on Earth otherwise the answer would be different.
Answer:
m = 4.5021 kg
Explanation:
given,
Apparent mass of aluminium = 4.5 kg
density of air = 1.29 kg/m³
density of aluminium = 2.7 x 10⁷ kg/m³
true mass of the aluminium = ?
Weight in Vacuum
W = m g
W = ρV g
Air buoyancy acting on aluminium
B = ρ₀V g
Volume is the same in both cases since the volume of the aluminum
displaces an equal amount of volume air.
Apparent weight:
ρV g − ρ₀V g = 4.5 g
ρV − ρ₀V = 4.5

m = ρV


m = 4.5021 kg
Answer:
0 is your answereeeeerrrrr
Answer:
y = x tan θ - (g / 2v₀² cos² θ) x²
Explanation:
An equation is called a general formula that relates the position on the x-axis and the height on the body's axis.
Let's write the position on each axis
X axis. No acceleration
x = v₀ₓ t
Y Axis. There is the acceleration of gravity
y =
t - ½ g t²
Let's clear the time in the first equation and substitute in the second
y = v₀ sin θ (x / v₀ₓ) - ½ g (x / v₀ₓ)²
y = v₀ sin θ / v₀ cos θ x - ½ g x² / v₀² cos² θ
y = x tan θ - (g / 2v₀² cos² θ) x²
This is the trajectory equation in projectile launching
Answer:
this makes no since so i cant help you here sorry