Answer:

Explanation:
<u>Density
</u>
The density of a substance is the mass per unit volume. The density varies with temperature and pressure.
The formula to calculate the density of a substance of mass (m) and volume (V) is:

We have a cube-shaped piece of copper of 4 cm of side length. The volume of the piece is:

Surprisingly, no other magnitude is required, thus the answer is:

Answer:
Approximately 21 km.
Explanation:
Refer to the not-to-scale diagram attached. The circle is the cross-section of the sphere that goes through the center C. Draw a line that connects the top of the building (point B) and the camera on the robot (point D.) Consider: at how many points might the line intersects the outer rim of this circle? There are three possible cases:
- No intersection: There's nothing that blocks the camera's view of the top of the building.
- Two intersections: The planet blocks the camera's view of the top of the building.
- One intersection: The point at which the top of the building appears or disappears.
There's only one such line that goes through the top of the building and intersects the outer rim of the circle only once. That line is a tangent to this circle. In other words, it is perpendicular to the radius of the circle at the point A where it touches the circle.
The camera needs to be on this tangent line when the building starts to disappear. To find the length of the arc that the robot has travelled, start by finding the angle
which corresponds to this minor arc.
This angle comes can be split into two parts:
.
Also,
.
The radius of this circle is:
.
The lengths of segment DC, AC, BC can all be found:
In the two right triangles
and
, the value of
and
can be found using the inverse cosine function:


.
The length of the minor arc will be:
.
Answer:
44 N/m
Explanation:
The extension, e, of the spring = 2.9 m - 1.4 m = 1.5 m
The work needed to stretch a spring by <em>e</em> is given by

where <em>k</em> is spring constant.

Using the appropriate values,

(2) impulse is a vector quantity. Energy has no direction, nor does power. Work is a dot product of vector quantities, which makes it a scalar.
Answer:
a = -0.05 m/s² (negative sign shows deceleration)
Explanation:
In order, to find out the minimum average acceleration for a student starting at 5 m/s to slide to the end, we can use 3rd equation of motion. 3rd equation of motion is given as follows:
2as = Vf² - Vi²
where,
a = minimum acceleration required = ?
s = minimum distance covered = 250 m
Vf = Final Speed = 0 m/s (for minimum acceleration the student will barely cover 250 m and then stop)
Vi = Initial Velocity = 5 m/s
Therefore,
2a(250 m) = (0 m/s)² - (5 m/s)²
a = - (25 m²/s²)/(500 m)
<u>a = -0.05 m/s²</u> (negative sign shows deceleration)