1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yawa3891 [41]
3 years ago
13

A ball is thrown from a rooftop with an initial downward velocity of magnitude vo = 2.9 m/s. The rooftop is a distance above the

ground, h = 21 m. In this problem use a coordinate system in which upwards is positive.
Physics
1 answer:
Step2247 [10]3 years ago
6 0

Answer:

a) The velocity of the ball when it hits the ground is -20.5 m/s.

b) To acquire a final velocity of 27.3 m/s, the ball must be thrown from a height of 38 m.

Explanation:

I´ve found the complete question on the web:

<em />

<em>A ball is thrown from a rooftop with an initial downward velocity of magnitude v0=2.9 m/s. The rooftop is a distance above the ground, h= 21 m. In this problem use a coordinate system in which upwards is positive.</em>

<em>(a) Find the vertical component of the velocity with which the ball hits the ground.</em>

<em>(b) If we wanted the ball's final speed to be exactly 27, 3 m/s from what height, h (in meters), would we need to throw it with the same initial velocity?</em>

<em />

The equation of the height and velocity of the ball at any time "t" are the following:

h = h0 + v0 · t + 1/2 · g · t²

v = v0 + g · t

Where:

h = height of the ball at time t.

h0 = initial height.

v0 = initial velocity.

t = time.

g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).

v = velocity of the ball at a time "t".

First, let´s find the time it takes the ball to reach the ground (the time at which h = 0)

h = h0 + v0 · t + 1/2 · g · t²

0 = 21 m - 2.9 m/s · t - 1/2 · 9.8 m/s² · t²

Solving the quadratic equation using the quadratic formula:

t = 1.8 s  ( the other solution of the quadratic equation is rejected because it is negative).

Now, using the equation of velocity, let´s find the velocity of the ball at

t = 1.8 s:

v = v0 + g · t

v = -2.9 m/s - 9.8 m/s² · 1.8 s

v = -20.5 m/s

The velocity of the ball when it hits the ground is -20.5 m/s.

b) Now we have the final velocity and have to find the initial height. Using the equation of velocity we can obtain the time it takes the ball to acquire that velocity:

v = v0 + g · t

-27.3 m/s = -2.9 m/s - 9.8 m/s² · t

(-27.3 m/s + 2.9 m/s) / (-9.8 m/s²) = t

t = 2.5 s

The ball has to reach the ground in 2.5 s to acquire a velocity of 27.3 m/s.

Using the equation of height, we can obtain the initial height:

h = h0 + v0 · t + 1/2 · g · t²

0 = h0 -2.9 m/s · 2.5 s - 1/2 · 9.8 m/s² · (2.5 s)²

-h0 = -2.9 m/s · 2.5 s - 1/2 · 9.8 m/s² · (2.5 s)²

h0 = 38 m

To acquire a final velocity of 27.3 m/s, the ball must be thrown from a height of 38 m.

You might be interested in
The candle burning
vodka [1.7K]

Answer:

A

Explanation:

its oxygen I hope i am correct have a great day.

3 0
2 years ago
A migrating robin flies due north with a speed of 12 m/s relative to the air. The air moves due east with a speed of 6.7 m/s rel
mafiozo [28]

Here it is given that speed of migrating Robin is 12 m/s relative to air

so we can say that

\vec v_{ra} = 12 m/s North

so it will be

Let North direction is along Y axis and East direction is along X axis

\vec v_{ra} = 12\hat j

also it is given that speed of air is 6.7 m/s relative to ground

\vec v_a = 6.7 \hat i

now as we know by the concept of relative motion

\vec v_{ab} = \vec v_a - \vec v_b

\vec v_{ra} = \vec v_r  - \vec v_a

now by rearranging the terms

\vec v_r = \vec v_{ra} + \vec v_a

\vec v_r = 12 \hat j + 6.7 \hat i

now we need to find the speed of Robin which means we need to find the magnitude of its velocity which we found above

So here we will say

v_r = \sqrt{12^2 + 6.7^2}

v_r = 13.7 m/s

so the net speed of Robin with respect to ground will be 13.7 m/s

7 0
3 years ago
Prior to the Panama Canal, __________ was a major route between the Atlantic and Pacific oceans.
Bingel [31]
The Rio Grande was the major route prior to the Panama Canal.
3 0
3 years ago
Read 2 more answers
A spaceship is traveling through deep space towards a space station and needs to make a course correction to go around a nebula.
expeople1 [14]

Answer:

Magnitude = 3.64 × 10^6  

စ = 43.9°

Explanation:

given data

ship to travel = 1.7 × 10^6    kilometers

turn = 70°

travel an additional = 2.7 × 10^6   kilometers

solution

we will consider here

Px = 1.7 × 10^6  

Py = 0

Qx =2.7 × 10^6  cos(70)

Qy= 2.7 × 10^6  sin(70)

so that

Hx = Px + Qx    ............1

Hx = 2.62 × 10^6  

and

Hy = Py + Qy      ..........2

Hy = 2.53 × 10^6  

so Magnitude = \sqrt{((2.62 \times 10^6  )^2+(2.53 \times 10^6)^2)}

Magnitude = 3.64 ×  

so direction  will be

tan စ = Hy ÷ Hx    ......................3

tan စ  = \frac{2.53}{2.62}

tan စ  = 0.9656

စ = 43.9°

3 0
3 years ago
WILL MAKE BRAINLYEST!!!!!! PLZ HELP
mylen [45]

Answer:

D.

Explanation:

4 0
3 years ago
Other questions:
  • A water pipe tapers down from an initial radius of R1 = 0.21 m to a final radius of R2 = 0.11 m. The water flows at a velocity v
    7·1 answer
  • if spiderman runs and jumps horizontally from the top of a 200m high building, what does he need his velocity to be to land on a
    5·1 answer
  • How is work calculated?
    7·1 answer
  • Cotton balls could be used to represent clouds because of their white color and appearance of texture. Which of these other thin
    9·2 answers
  • What is scientific inquiry (method) ?
    6·1 answer
  • Which of the following describes a chemical change?
    10·1 answer
  • QUESTION 4
    15·1 answer
  • Momentum is conserved it can be transferred but not lost. true or false​
    12·1 answer
  • You are riding a bicycle up a gentle hill. It is fairly easy to increase your potential
    11·1 answer
  • Salmon often jump waterfalls to reach their
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!