Answer:
1.8 m/s
Explanation:
momentum = mass × velocity
initial momentum = m1v1+m2v2
= 3×3 +2×0 = 9+0= 9 kg m/s
let combined velocity be V
HENCE
final momentum = total mass × velocity
= (3+2) × V = 5V
According to law of conservation of momentum
final momentum = initial momentum
5V = 9
V =9/5
V = 1.8 m/s
Answer:
If all the heat energy contained in a body is removed and changes in its temperature is described below in detail.
Explanation:
It moves from a body at a greater temperature to a body at a cheaper temperature. All element survives as solids, liquids, or gases. The material can transfer from one station to another if warmed or cooled. When heat is provided to a body its heat increases: When a physical body, hard, liquid. When heat is provided is stopped to a body its temperature decline.
Answer:
Change in potential energy of the block-spring-Earth
system between Figure 1 and Figure 2 = 1 Nm.
Explanation:
Here, spring constant, k = 50 N/m.
given block comes down eventually 0.2 m below.
here, g = 10 m/s.
let block be at a height h above the ground in figure 1.
⇒In figure 2,
potential energy of the block-spring-Earth
system = m×g×(h - 0.2) + 1/2× k × x². where, x = change in spring length.
⇒ Change in potential energy of the block-spring-Earth
system between Figure 1 and Figure 2 = (m×g×(h - 0.2)) - (1/2× k × x²)
= (1×10×0.2) - (1/2×50×0.2×0.2) = 1 Nm.
Answer:
The more hydrogen bonds a molecule can make, the higher the surface tension.
Explanation:
Hydrogen bonds provide higher surface tension to a liquid
More hydrogen molecules - stronger cohesive forces