The emf induced in the second coil is given by:
V = -M(di/dt)
V = emf, M = mutual indutance, di/dt = change of current in the first coil over time
The current in the first coil is given by:
i = i₀
i₀ = 5.0A, a = 2.0×10³s⁻¹
i = 5.0e^(-2.0×10³t)
Calculate di/dt by differentiating i with respect to t.
di/dt = -1.0×10⁴e^(-2.0×10³t)
Calculate a general formula for V. Givens:
M = 32×10⁻³H, di/dt = -1.0×10⁴e^(-2.0×10³t)
Plug in and solve for V:
V = -32×10⁻³(-1.0×10⁴e^(-2.0×10³t))
V = 320e^(-2.0×10³t)
We want to find the induced emf right after the current starts to decay. Plug in t = 0s:
V = 320e^(-2.0×10³(0))
V = 320e^0
V = 320 volts
We want to find the induced emf at t = 1.0×10⁻³s:
V = 320e^(-2.0×10³(1.0×10⁻³))
V = 43 volts
Answer:
Explanation:
Generally, length of vector means the magnitude of the vector.
So, given a vector
R = a•i + b•j + c•k
Then, it magnitude can be caused using
|R|= √(a²+b²+c²)
So, applying this to each of the vector given.
(a) 2i + 4j + 3k
The length is
L = √(2²+4²+3²)
L = √(4+16+9)
L = √29
L = 5.385 unit
(b) 5i − 2j + k
Note that k means 1k
The length is
L = √(5²+(-2)²+1²)
Note that, -×- = +
L = √(25+4+1)
L = √30
L = 5.477 unit
(c) 2i − k
Note that, since there is no component j implies that j component is 0
L = 2i + 0j - 1k
The length is
L = √(2²+0²+(-1)²)
L = √(4+0+1)
L = √5
L = 2.236 unit
(d) 5i
Same as above no is j-component and k-component
L = 5i + 0j + 0k
The length is
L = √(5²+0²+0²)
L = √(25+0+0)
L = √25
L = 5 unit
(e) 3i − 2j − k
The length is
L = √(3²+(-2)²+(-1)²)
L = √(9+4+1)
L = √14
L = 3.742 unit
(f) i + j + k
The length is
L = √(1²+1²+1²)
L = √(1+1+1)
L = √3
L = 1.7321 unit
Yes. Either way though, humans have more chromosomes than any other species.
Answer:
It is called so because it is applicable on all bodies having mass, and the bodies will be governed by the same law, that is newton's law of gravitation. Thus, as it is applicable universally, it is called as universal law.
True is The answer would be I just did this