A) 0.189 N
The weight of the person on the asteroid is equal to the gravitational force exerted by the asteroid on the person, at a location on the surface of the asteroid:

where
G is the gravitational constant
8.7×10^13 kg is the mass of the asteroid
m = 130 kg is the mass of the man
R = 2.0 km = 2000 m is the radius of the asteroid
Substituting into the equation, we find

B) 2.41 m/s
In order to orbit just above the surface of the asteroid (r=R), the centripetal force that keeps the astronaut in orbit must be equal to the gravitational force acting on the astronaut:

where
v is the speed of the astronaut
Solving the formula for v, we find the minimum speed at which the astronaut should launch himself and then orbit the asteroid just above the surface:

Answer:
The answer is option A.
You speed up 8 m/s every second
Hope this helps you
Answer:
Lifting a bag of groceries
Answer:

Explanation:
Given that
The speed of the airplane ,v= 142 m/s
The speed of the air ,u = 30 m/s
Lets take angle make by airplane from east direction towards north direction is θ .
Now by using diagram ,we can say that

Now by putting the values in the above equation we get



Therefore the angle will be 12.19° .
Answer:
c. Joints allow the roadway to expand and contract as cars put force on the bridge
Explanation:
The reasons why joints are allowed on roadway is to accommodate the contraction and expansion of the road as cars put force on them.
- Most materials used in making roadways are susceptible to expansion and contraction.
- When a measure of force is applied their length either increases or decreases depending on the type of force.
- To accommodate these changes, joints are placed in roadways