The boat is moving at 22 m/s while the man is moving at 23.1 m/s.
That means the man, relative to the boat, is moving at 23.1-22 = 1.1 m/s.
v =d/t, so t = d/v --> t = 3/1.1 = 2.7 s
We know, Potential Energy = m * g * h
Here, mass & gravity would be same, but their height will change so it will be:
ΔU = U₂ - U₁
ΔU = mgh₂ - mgh₁
ΔU = mg (h₂ - h₁)
Hope this helps!
When the child is moving, he/she has kinetic energy. For just a brief second before they move the other way, the child is not moving, but they have gravitational potential energy.
The child may need a push from time to time because friction with the air causes loss of energy.
Answer:
the energy required for the extension is 12.25 J
Explanation:
Given;
force constant of trampoline spring, k = 800 N/m
extension of trampoline spring, x = 17.5 cm = 0.175 m
The energy required for the extension is calculated as;
E = ¹/₂kx²
E = 0.5 x 800 x 0.175²
E = 12.25 J
Therefore, the energy required for the extension is 12.25 J