Answer:
t = 1.77 s
Explanation:
The equation of a traveling wave is
y = A sin [2π (x /λ -t /T)]
where A is the oscillation amplitude, λ the wavelength and T the period
the speed of the wave is constant and is given by
v = λ f
Where the frequency and period are related
f = 1 / T
we substitute
v = λ / T
let's develop the initial equation
y = A sin [(2π / λ) x - (2π / T) t +Ф]
where Ф is a phase constant given by the initial conditions
the equation given in the problem is
y = 5.26 sin (1.65 x - 4.64 t + 1.33)
if we compare the terms of the two equations
2π /λ = 1.65
λ = 2π / 1.65
λ = 3.81 m
2π / T = 4.64
T = 2π / 4.64
T = 1.35 s
we seek the speed of the wave
v = 3.81 / 1.35
v = 2.82 m / s
Since this speed is constant, we use the uniformly moving ratios
v = d / t
t = d / v
t = 5 / 2.82
t = 1.77 s
The coal is urned to heat up water. this produces steam. the steam turns a turbine that turns a generator which provided energy yhat can be transferred into electrisity
Answer:
Explanation:
When the pendulum falls freely the net acceleration due to gravity is zero.
As we know that the time period of simple pendulum is inversely proportional to the square root of acceleration due to gravity, thus the time period becomes infinity.
Since each time trial is the same the average will be the direct answer, and the formula for velocity is distance divided by time, therefore it will come out to, 1.92307692. Whatever your teacher what the rounding process to be will vary but the straight up answer is there.
Answer:2.5 m/s
37.5KJ
Explanation:
Let
be the initial velocity of rail road car ,coupled cars & Final velocity of system respectively.

Conserving momentum



Therefore Final velocity of system is 2.5m/s
(b)Mechanical Energy lost =Initial Kinetic Energy -Final Kinetic Energy


