There are six protons and eight neutrons present in the carbon atom as shown.
<h3>What is the nucleus?</h3>
The nucleus of an atom consists of its protons and its neutrons. The protons are positively charged while the neutrons have no charge.
From the symbol of the element as shown in the question, we can see that there are six protons and eight neutrons present.
Learn more about nucleus of atoms:brainly.com/question/10658589
#SPJ1
This problem is providing us with a statement in which we need to figure out the word fitting in the blank. At the end, after analyzing the information, the word turns out to be colligative as show below:
<h3>Colligative properties.</h3>
In chemistry, colligative properties of solutions account for the behavior of a solution with respect to the pure solvent, to which a solute is added.
Among them, we have boiling point elevation, freezing point depression, vapor pressure lowering and osmotic pressure, which are all affected by the concentration of the solute but not by the identity of the solute.
In such a way, we conclude that the correct word that fits in the blank is colligative as shown below:
"Colligative properties depend on the concentration of a solute in a solution but not on the identity of the solute."
Learn more about colligative properties: brainly.com/question/10323760
Answer:
The problem of energy exchange between waves and particles, which leads to energization of the latter, in an unstable plasma typical of the radiation belts. The ongoing Van Allen Probes space mission brought this problem among the most discussed in space physics. A free energy which is present in an unstable plasma provides the indispensable condition for energy transfer from lower energy particles to higher-energy particles via resonant wave-particle interaction. This process is studied in detail by the example of electron interactions with whistler mode wave packets originated from lightning-induced emission. We emphasize that in an unstable plasma, the energy source for electron energization is the energy of other particles, rather than the wave energy as is often assumed. The way by which the energy is transferred from lower energy to higher-energy particles includes two processes that operate concurrently, in the same space-time domain, or sequentially, in different space-time domains, in which a given wave packet is located. In the first process, one group of resonant particles gives the energy to the wave. The second process consists in wave absorption by another group of resonant particles, whose energy therefore increases. We argue that this mechanism represents an efficient means of electron energization in the radiation belts.
Explanation:
Fun facts:
In the process of energy transfer between two groups of particles both processes operate simultaneously, and if the lower energy part of plasma distribution gives energy to the wave while the higher‐energy part absorbs the wave enrgy, then the wave‐mediated energy transfer from lower energy particles to higher‐energy ...
Answer:
The image is not accurate because
the heavier atoms are moving faster than the lighter ones
but the lighter ones must move faster than the heavier ones.
Explanation:
The image depicts the atoms of two different elements; atoms of lighter and heavier elements.
And the rate of diffusion (movement of atoms) of an element is inversely proportional to the square root of its molecular.
⇒ As the weight increases, the rate of diffusion (movement of atoms) decreases.
And as the weight decreases, the rate of diffusion (movement of atoms) increases.
so, heavier atoms move slowly compared to lighter atoms.
The image is not accurate because
the heavier atoms are moving faster than the lighter ones
but the lighter ones must move faster than the heavier ones.