<em>Acceleration at 50m/sec² : means every second the velocity increases by 50 m/sec. In 3 seconds the velocity increases by 150 m/s. So total will be 160 m/sec.
the formula is</em>
<em> V = final velocity = U initial velocity + acceleration a * time duration t</em>
<em> V = 10 m/s + 50 m/sec² * 3 sec = 160 m/sec</em>
For atoms in the periodic table, the given mass number is the sum of the number of the protons (also called the atomic number) and the number of the neutrons inside its nucleus. Mathematically,
mass number = atomic number + number of neutrons
Substituting,
39 = 19 + n
n = 39 - 19 = 20
Therefore, the answer is not found in the choices.
Answer: 1.289 m
Explanation:
The path the cobra's venom follows since it is spitted until it hits the ground, is described by a parabola. Hence, the equations for parabolic motion (which has two components) can be applied to solve this problem:
<u>x-component:
</u>
(1)
Where:
is the horizontal distance traveled by the venom
is the venom's initial speed
is the angle
is the time since the venom is spitted until it hits the ground
<u>y-component:
</u>
(2)
Where:
is the initial height of the venom
is the final height of the venom (when it finally hits the ground)
is the acceleration due gravity
Let's begin with (2) to find the time it takes the complete path:
(3)
Rewritting (3):
(4)
This is a quadratic equation (also called equation of the second degree) of the form , which can be solved with the following formula:
(5)
Where:
Substituting the known values:
(6)
Solving (6) we find the positive result is:
(7)
Substituting (7) in (1):
(8)
We finally find the horizontal distance traveled by the venom:
Its 1.0*10^-7M its considered a concentration because hydrogen ion is exactly equal to hydroxide ions produced by dissociation of water