Answer: 2.04 s
Explanation:
Let the initial velocity be v, Angle of projectile be
Then the horizontal component = v cos θ = 16 m/s
Vertical component of velocity = v sin θ = 20 m/s
Time taken to reach the highest point is half the time taken for total flight.
Time for total flight,


Thus, the football takes 2.04 s to rise to the highest point of its trajectory.
Answer:
Only the goalie is allowed inside the goal crease. The only exception when another player is allowed in the goal area is when they take off from outside the goal area, and shoots or passes the ball before landing. To avoid interference with other players, the player must then exit the goal area as soon as possible.
Explanation:
We assume that horn releases sound of constant frequency. In order for observer to observe different frequency either horn or observer or both must move.
This happens due to Doppler effect. It states that when position of source of sound and observer relative to each other changes, the observed frequency also changes. If the source emits sound of constant frequency than observed frequency will be either higher or lower than original.
When distance between source and observer increases the observed frequency will be lower. This is because same number of sound waves must cover greater distance so they have greater wavelength.
When distance between source and observer decreases the observed frequency will be higher. This is because same number of sound waves must cover smaller distance so they have smaller wavelength.
Wavelength and frequency are inversely proportional meaning when one increases the other drecreases.
From this explanation we can find answer for our question. <span>If we wanted the pitch of a horn to drop relative to an observer we need to move horn away from an observer.</span>
The mass of an object always stays the same since it is really just the amount of matter in an object so no matter the force applied, as long as the object does not lose or gain matter, the object stays the same