King Arthur's knights use a catapult to launch a rock from their vantage point on top of the castle wall, 14 m above the moat. The rock is launched at a speed of 27 m/s and an angle of 32degrees above the horizontal.
<h2>
Answer:</h2>
The rate of deceleration is -0.14
<h2>
Explanation:</h2>
Using one of the equations of motion;
v = u + at
where;
v = final velocity of the boat = 0m/s (since the boat decelerates to a stop)
u = initial velocity of the boat = 25m/s
a = acceleration of the boat
t = time taken for the boat to accelerate/decelerate from u to v = 3 minutes
<em>Convert the time t = 3 minutes to seconds;</em>
=> 3 minutes = 3 x 60 seconds = 180seconds.
<em>Substitute the values of v, u, t into the equation above. We have;</em>
v = u + at
=> 0 = 25 + a(180)
=> 0 = 25 + 180a
<em>Make a the subject of the formula;</em>
=> 180a = 0 - 25
=> 180a = -25
=> a = -25/180
=> a = -0.14
The negative value of a shows that the boat is decelerating.
Therefore, the rate of deceleration of the speed boat is 0.14
Generally, the length of the line will indicate how strong the force is. If you have two opposing forces and one is higher than the other, you would draw the line of the higher force visibly longer.
Answer:
0.25 m
Explanation:
Refraction occurs when the velocity or wavelength of a wave changes at the interface between two media.
We know that refractive index=
Wavelength in medium A/wavelength in medium B = velocity in medium A/velocity in medium B
Let the wavelength of medium B be a
0.5/a = 0.3/0.15
0.5 × 0.15 = 0.3 × a
a= 0.5 × 0.15/0.3
a= 0.25 m
Force is directly proportional to rate of change of velocity so it increasing, velocity (motion of the object) will also increase.
Hope this helps!