Answer:
so rate constant is 4.00 x 10^-4 
Explanation:
Given data
first-order reactions
85% of a sample
changes to propene t = 79.0 min
to find out
rate constant
solution
we know that
first order reaction are
ln [A]/[A]0 = -kt
here [A]0 = 1 and (85%) = 0.85 has change to propene
so that [A] = 1 - 0.85 = 0.15.
that why
[A] / [A]0= 0.15 / 1
[A] / [A]0 = 0.15
here t = (79) × (60s/min) = 4740 s
so
k = - {ln[A]/[A]0} / t
k = -ln 0.15 / 4740
k = 4.00 x 10^-4 
so rate constant is 4.00 x 10^-4 
Answer:
13 km
Explanation:
The bird flies from the runner, to the finish line, and back to the runner. We can write two equations for the distance it travels:
d = 7.8 km + 7.8 km − 4.9 km/hr × t
d = 24.5 km/hr × t
Solve for t in the second equation and substitute into the first:
t = d / 24.5
d = 7.8 + 7.8 − 4.9 (d / 24.5)
d = 15.6 − 0.2 d
1.2 d = 15.6
d = 13
The bird flies a cumulative distance of 13 km.
Answer:
10.53m/s²
Explanation:
Centripetal acceleration is the acceleration of an object about a circle. The formula for calculating centripetal acceleration is expressed by:

v is the velocity of the car = 24.5m/s
r is the radius of the track = 57.0m
Substitute the given values into the formula:

Hence the centripetal acceleration of the race car is 10.53m/s²
It is an intensive property as it varies with time and position within the system.