When an atom of the unstable isotope Na-24 decays, it becomes an atom of Mg-24 because the Na-24 atom spontaneously releases (2) a<span> beta particle</span>.
Answer:
6.22 × 10⁻⁵
Explanation:
Step 1: Write the dissociation reaction
HC₆H₅COO ⇄ C₆H₅COO⁻ + H⁺
Step 2: Calculate the concentration of H⁺
The pH of the solution is 2.78.
pH = -log [H⁺]
[H⁺] = antilog -pH = antilog -2.78 = 1.66 × 10⁻³ M
Step 3: Calculate the molar concentration of the benzoic acid
We will use the following expression.
Ca = mass HC₆H₅COO/molar mass HC₆H₅COO × liters of solution
Ca = 0.541 g/(122.12 g/mol) × 0.100 L = 0.0443 M
Step 4: Calculate the acid dissociation constant (Ka) for benzoic acid
We will use the following expression.
Ka = [H⁺]²/Ca
Ka = (1.66 × 10⁻³)²/0.0443 = 6.22 × 10⁻⁵
Solving this chemistry is a little bit hard because the question didn't give some important detailed.
So first, there are a couple problems with your question.
We will just need to know which direction will it proceed to reach equilibrium.
Your expression for Kc (and Qc ) for the reaction should be:
Kc = [C] / [A] [B]^2
You have not provided a value for Kc, so a value of Qc tells you absolutely nothing. Qc is only valuable in relation to a numerical value for Kc. If Qc = Kc, then the reaction is at equilibrium. If Q < K, the reaction will form more products to reach equilibrium, and if Q > Kc, the reaction will form more reactants.