Answer:
There are 2 double bond units and 1 lone pair, which will try to get as far apart as possible - taking up a trigonal planar arrangement. Because the lone pair isn't counted when you describe the shape, SO2 is described as bent or V-shaped.
Explanation:
There are 2 double bond units and 1 lone pair, which will try to get as far apart as possible - taking up a trigonal planar arrangement. Because the lone pair isn't counted when you describe the shape, SO2 is described as bent or V-shaped.
The balanced equation is Fe₂O₃ + 3 CO = 2 Fe + 3 CO₂.
Next step is to convert everything to moles.
12.6g Fe₂O₃ x (1 mol Fe₂O₃ / 159.7g Fe₂O₃) = 0.07890 mol Fe₂O₃
9.65g CO x (1 mol CO / 28.01g CO) = 0.3445 mol CO
The third step is to determine the limiting and excess reactants.
0.07890 mol Fe₂O₃ x (3 mol CO/1 mol Fe₂O₃) = 0.2367 mol CO
Therefore Fe₂O₃ is the limiting reagent while CO is in excess.
0.07890 mol Fe x (2 mol Fe(s) / 1 mol Fe₂O₃) = 0.1578 mol Fe(s)
0.1578 mol Fe x (55.84g Fe / mole Fe) = 8.812g Fe is the theoretical yield
%yield = (7.23g / 8.812g) x 100% = 82.0% is the percent yield
26. B
27. D
28. C
Hope this helped ☺️
Question is incomplete. Complete question is attached below
.............................................................................................................................
Answer: Option A: HCO3-(aq.)
Reason:
From the reaction, it can be seen that following reaction occurs in forward direct
HCO3-(aq) + H2O(l) → H2CO3(aq) + OH-(aq)
In above forward reaction, HCO3- accepts proton from H2O to generate H2CO3. Thus, according to Lowry and Bronsted theory of acid-base,
HCO3- is a base, while
H2CO3 is a conjugate acid.
Magnesium chloride is the name for the chemical compounds with the formulas MgCl2 and its various hydrates MgCl2(H2O<span>)x. These salts are typical ionic halides, being highly soluble in water. The hydrated magnesium chloride can be extracted from brine or sea water.</span>