1070 hours.
1 mole of iron-59 would mass 59 grams, so 0.133 picograms would be 0.133x10^-12 / 59 = 2.25x10^-15 moles of iron-59. Multiplying by Avogadro's number, we can determine the number of atoms of iron-59 we have, so: 2.25x10^-15 * 6.02214x10^23 = 1.35x10^9
Since we have 242 decays over a period of 1 second, we can divide the
number of atoms left by the original number of atoms
(1350000000 - 242)/1350000000
= 1349999758/1350000000
= 0.999999820740741
And calculate the logarithm to base 2 of that quotient.
ln(0.999999820740741)/ln(2)
= -1.79259275281191x10^-7/0.693147180559945
= -2.58616467481524x10^-7
The reciprocal of this number will be the half life in seconds. So
-1/2.58616467481524x10^-7
= -3866729.79388461
And dividing by 3600 (number of seconds in an hour) will give the half-life in
hours.
-3866729.79388461 / 3600 = -1074.091609
So the half life in hours to 3 significant figures is 1070 hours.
Dividing that figure by 24 gives a half life of 44.58 days which is in pretty close agreement to the official half-life of 44.495 days for iron-59.
Answer:
Hello There!!
Explanation:
The answer is B.Year
It takes 365 days for the earth to orbit the sun. 365 days is 1 year.
hope this helps,have a great day!!
~Pinky~
Answer:
Most of these rocks are not made up of common geometric shapes
Explanation:
Because most rocks are not made up of common geometric shapes, it would be difficult or impossible to find the volume of a rock using a ruler; there would be no easy way to measure the rock's volume using a ruler
Hope this helped!
Answer:
Super-heavy elements like 114 usually only exist for fractions of a second. ... The physicists called these magic numbers the “island of stability”, because the elements with the numbers cluster together on the periodic table, flanked on all sides by ephemeral elements that dissipate in nanoseconds.
Answer: 22.3 *10^23 S atoms
Explanation: