Answer:

Explanation:
Let assume that air behaves ideally. The equation of state of ideal gases is:

Where:
- Pressure, in kPa.
- Volume, in m³.
- Quantity of moles, in kmol.
- Ideal gas constant, in
.
- Temperature, in K.
Since there is no changes in pressure or the quantity of moles, the following relationship between initial and final volumes and temperatures is built:

The final temperature is:



Explanation:
F = m a
F= 4.0×4.0
F= 16 N
......................................................................................................
F= ma
25= m × 4.998
m= 25/4.998
m= 5.002 kg
......................................................................................................
F=ma
53= 3 × a
a= 53/3
a= 17.666 m/s
Answer: D. the distance between the highest points of consecutive waves
Explanation:
The wavelength of a wave is defined as the <em>distance traveled by a periodic perturbation that propagates through a medium in a given time interval</em>. It is usually represented by
and can be calculated if the frequency of the wave is known, since there is an inverse relationship between both.
In the specific case of a periodic sine wave (which is the way in which a wave is usually represented graphically) the wavelength can be determined as the distance between two consecutive maxima of the disturbance.
Therefore, the correct option is D.