This type of a problem can be solved by considering energy transformations. Initially, the spring is compressed, thus having stored something called an elastic potential energy. This energy is proportional to the square of the spring displacement d from its normal (neutral position) and the spring constant k:
So, this spring is storing almost 12 Joules of potential energy. This energy is ready to be transformed into the kinetic energy when the masses are released. There are two 0.2kg masses that will be moving away from each other, their total kinetic energy after the release equaling the elastic energy prior to the release (no losses, since there is no friction to be reckoned with).
The kinetic energy of a mass m moving with a velocity v is given by:
And we know that the energies are conserved, so the two kinetic energies will equal the elastic potential one:
From this we can determine the speed of the mass:
The speed will be 7.74m/s in in one direction (+), and same magnitude in the opposite direction (-).
Answer:
the first one is a group 1 and the second one is d all of the above
Explanation:
Limiting factors are resources or other factors in the environment that can lower the population growth rate. Competition for resources like food and space cause the growth rate to stop increasing, so the population levels off. This flat upper line on a growth curve is the carrying capacity.
Answer:
Explanation:
A ) Let the angle be θ between magnetic field and velocity of charged particle
Force created on charged particle F
= Bqv sinθ, B is magnetic field , q is charge , v is velocity of charged particle
F = .05 x 2 x 10⁻⁶ x 10⁸ x sinθ
8 = 10 sinθ
sinθ = .8
θ = 53°.
B )
acceleration = force / mass
= 8 / 10⁻²⁰
= 8 x 10²⁰ m / s²