Answer:
the correct answer is B
Explanation:
The kinetic model of the movement describes that the movement of the molecules increases with the increase of their internal energy, which in a macroscopic sample is reflected in an increase in the temperature of the sample.
The sample graph shows the function of temperature over time, which is why our kinetic model establishes that there is an increase in the movement of water molecules.
Consequently the correct answer is B
Answer:
A ) 1000 m.
Explanation:
Here initial velocity u = 100 m /s
Final velocity v = 0
Acceleration a = -5 ms⁻²
Distance travelled = S
v² = u² + 2aS
0 = (100)² -2 x 5 S
S = 10000/ 10
=1000 m.
Since acceleration is constant, we can use the formula
v² - u² = 2a ∆x
where v = final velocity, u = initial velocity, a = acceleration, and ∆x = displacement. Then
0² - (20.0 m/s)² = 2 (-4.20 m/s²) ∆x
⇒ ∆x = (20.0 m/s)² / (8.40 m/s²) ≈ 47.6 m
They literally gave you the answer but okay.
Correct answer should be: B. 490 Meters
1/2 x 9.8 x 10^2
Plug them in a calculator and you get <u>490 meters. </u>
<u>G </u>= Gravity which is 9.8 m/s^2
<u>T</u>= Time
Answer:
The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.
Explanation:
Given:-
- The diameter of the drill bit, d = 98 cm
- The power at which drill works, P = 5.85 hp
- The rotational speed of drill, N = 1900 rpm
Find:-
What Torque And Force Is Applied To The Drill Bit?
Solution:-
- The amount of torque (T) generated at the periphery of the cutting edges of the drilling bit when it is driven at a power of (P) horsepower at some rotational speed (N).
- The relation between these quantities is given:
T = 5252*P / N
T = 5252*5.85 / 1900
T = 16.171 Nm
- The force (F) applied at the periphery of the drill bit cutting edge at a distance of radius from the center of drill bit can be determined from the definition of Torque (T) being a cross product of the Force (F) and a moment arm (r):
T = F*r
Where, r = d / 2
F = 2T / d
F = 2*16.171 / 0.98
F = 33 N
Answer: The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.