The period of the wave is 4.35 ms. The sound waves are called longitudinal waves
Explanation:
The period of a wave is related to its frequency by the equation:

where
T is the period
f is the frequency
For the bee in this problem, the frequency of the sound wave emitted by it is

Therefore, the period of the sound wave is

The sound wave is a type of wave called longitudinal wave. In longitudinal waves, the oscillation of the medium occurs in a direction parallel to the direction of motion of the wave: therefore in a sound wave, the particle of the medium (air, in this case) oscillate back and forth along the direction of propagation of the wave, forming alternating areas of higher density of particles (called compressions) and of lower density of particle (called rarefactions).
The other type of wave, instead, is called transverse wave. In a transverse wave, the oscillation of the wave occurs in a direction perpendicular to the direction of motion of the wave. An example of transverse waves are the electromagnetic waves, which consists of electric field and magnetic fields that vibrate in a plane perpendicular to the direction of motion of the wave itself.
Learn more about waves:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
Work = force x distance
200 Newtons x 20 meters
= 4,000 Joules
The train’s average speed is 80km/h
Answer:
(1) 0.333 Hz
(2) 4 sec
(3) 2 sec, 0.5 Hz
Explanation:
(1) We have given time period of pendulum is 3 sec
So T = 3 sec
Frequency will be equal to 
(2) Frequency of the pendulum is given f = 0.25 Hz
Time period is equal to 
(3) It is given that a pendulum makes 10 back and forth swings in 20 seconds
So time taken to complete 1 back and forth swings = 
So time period T = 2 sec
Frequency will be equal to 