Answer:
4. 7.59276
Explanation:
Add up the x components:
Aₓ + Bₓ + Cₓ = 5 − 1.6 + 2.4 = 5.8
Add up the y components:
Aᵧ + Bᵧ + Cᵧ = -2.4 + 3.3 + 4 = 4.9
Use Pythagorean theorem to find the magnitude:
√(x² + y²)
√(5.8² + 4.9²)
√57.65
7.59276
Answer:
Explanation:
A ) When gymnast is motionless , he is in equilibrium
T = mg
= 63 x 9.81
= 618.03 N
B )
When gymnast climbs up at a constant rate , he is still in equilibrium ie net force acting on it is zero as acceleration is zero.
T = mg
= 618.03 N
C ) If the gymnast climbs up the rope with an upward acceleration of magnitude 0.600 m/s2
Net force on it = T - mg , acting in upward direction
T - mg = m a
T = mg + m a
= m ( g + a )
= 63 ( 9.81 + .6)
= 655.83 N
D ) If the gymnast slides down the rope with a downward acceleration of magnitude 0.600 m/s2
Net force acting in downward direction
mg - T = ma
T = m ( g - a )
= 63 x ( 9.81 - .6 )
= 580.23 N
Answer:
Explanation:
First of all, I used the specific heat of water as 4182 J/(kgC) and the specific heat of ethyl alcohol (EtOH) as 2440 J/(kgC); that means that we need the masses in kg, not g.
120.g = .1200 kg of ethyl alcohol. Now for the formula:
where spheat is specific heat.
Filling that horrifying-looking formula in with some values:
and
and
16(4182x + 292.8) = 83640x + 2928 and
66912x + 4684.8 = 83640x + 2928 and
1756.8 = 16728x so
x = .105 kg and the amount of water added is 105 g
Answer:
Distance traveled will be 5.6307 m
Explanation:
Time t = 3 sec
We have given force F = 25 N
We know that force is given by F = ma
So ma = 25 -----------eqn 1
Weight is given by W = 196 N
We know that weight is given by W = mg
So mg = 196 -----------------eqn 2
From equation 1 and equation 2 

Initial velocity is given as 0 so u = 0 m/sec
From second equation of motion 