Answer:
0.187 m
Explanation:
We'll begin by calculating the acceleration of the ball. This can be obtained as follow:
Mass (m) = 0.450 Kg
Force (F) = 38 N
Acceleration (a) =?
F = m × a
38 = 0.450 × a
Divide both side by 0.450
a = 38 / 0.450
a = 84.44 m/s²
Finally, we shall determine the distance. This can be obtained as follow:
Initial velocity (u) = 2.20 m/s.
Final velocity (v) = 6 m/s
Acceleration (a) = 84.44 m/s²
Distance (s) =?
v² = u² + 2as
6² = 2.2² + (2 × 84.44 × s)
36 = 4.4 + 168.88s
Collect like terms
36 – 4.84 = 168.88s
31.52 = 168.88s
Divide both side by 168.88
s = 31.52 / 168.88
s = 0.187 m
Thus, the distance is 0.187 m
The movement of tectonic plates can cause earthquakes. Some can be major and some can be minor. Both can affect non-earthquake proof buildings though
Answer:
not sure. I'll try answering this later
Explanation:
I'm not sure. I'll try answering this later .
The speed at which the objects were attracted to each other determined by the gravitational pull.
<h3>What is gravity?</h3>
The force of attraction felt by a person at the center of a planet or Earth is called as the gravity or gravitational pull.
The gravitational force, Fg is the attractive force exerted by the Earth on the object that is equal to the mass of the object times the gravitational acceleration.
When the two objects are attracted, the speed with which they are moving toward each other depends on the strength of the pull force. This pull force is the gravitational pull.
Thus, the speed at which the objects were attracted to each other determined by the gravitational pull.
Learn more about gravity.
brainly.com/question/4014727
#SPJ1
Gamma rays have the highest energies and the shortest wavelengths.