Answer:
Binding Energy = 2.24 eV
Explanation:
First, we need to find the energy of the photon of light:
E = hc/λ
where,
E = Energy of Photon = ?
h = Plank's Constant = 6.626 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of light = 400 nm = 4 x 10⁻⁷ m
Therefore,
E = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(4 x 10⁻⁷ m)
E = (4.97 x 10⁻¹⁹ J)(1 eV/1.6 x 10⁻¹⁹ J)
E = 3.1 eV
Now, from Einstein's Photoelectric Equation:
E = Binding Energy + Kinetic Energy
Binding Energy = E - Kinetic Energy
Binding Energy = 3.1 eV - 0.86 eV
<u>Binding Energy = 2.24 eV</u>
Answer:
A microwave
Explanation:
Car
Lightbulb is a really good one
Same with the sun. That one has Chemical as well
Answer:
1.03 m/s
Explanation:
I'm too lazy to write the explanation down but my teacher graded this and it was right
Answer:
0.5m/s^2
Explanation:
We can use the formula [ F = ma ] but solve for "a" since that is what we are looking for.
F = ma
F/m = a
We know the net force and mass so substitute those values and simplify.
500/1000 = 0.5m/s^2
Best of Luck!
Given that,
Initial velocity , Vi = 0
Final velocity , Vf = 40 m/s
Acceleration due to gravity , a = 9.81 m/s²
Distance can be calculated as,
2as = Vf² - Vi²
2 * 9.81 *s = 40² - 0²
s = 81.55 m
For half height, that is, s = 40.77m
Vf= ??
2as = Vf² - Vi²
2 * 9.81 * 40.77 = Vf² - 0²
Vf² = 800
Vf = 28.28 m/s
Therefore, speed of roller coaster when height is half of its starting point will be 28 m/s.