Because the polar regions receive low-angle insolation.
Insolation is the amount of solar radiation received by a given area. The Sun is always low on the horizon. The low Sun angle makes the beam of solar radiation to travel a longer distance from upper troposphere to reach earth's surface as compared to when it is directly overhead. In this case, the radiations are scattered and reflected more by the atmosphere and spread over a larger area. Thus, the intensity of solar radiation is very less at polar regions than near the equatorial region. This is the reason of very cold climates at polar regions.
Answer: λ2= 2.34 * 10^-6 C/m
Explanation: In order to calculate the value of the linear charge density of the insulating shell we have to multiply ρ* Volume of the hollow cylinder, so
Volume of cylinder:2*π*b*L *(b-a) where (b-a) is the thickness, then
λ2=Q/L = 634 *10^-6 C/m^3* 2*π*0.042 m*(0.042-0.26)== 2.34 μ C/m
-- In combination with 610 Hz, the beat frequency is 4 Hz.
So the unknown frequency is either (610+4) = 614 Hz
or else (610-4) = 606 Hz.
In combination with 605 Hz, the beat frequency will be
either (614-605) = 9 Hz or else (606-605) = 1 Hz.
-- In actuality, when combined with the 605 Hz, the beat
frequency is too high to count accurately. That must be
the 9 Hz rather than the 1 Hz.
So the unknown is (605+9) = 614 Hz.
To solve this problem we will apply the definitions given in Newtonian theory about the Force of gravity, and the Force caused by weight. Both will be defined below, and in equal equilibrium condition to clear the variable concerning acceleration due to gravity. Finally, with the values provided in the statement, it will be replaced.
The equation for the gravitational force between the Earth and the object on the surface of the Earth is

Where,
G = Universal gravitational constant
= Mass of Earth
= Distance between object and center of earth
= Mass of Object
The equation for the gravitational pulling force on the object due to gravitational acceleration is

Equation the two expression we have


This the acceleration due to gravity which is composite constant.
Replacing with our values we have then


The value of composite constant is
. Here, the composite constant is nothing but the acceleration due to gravity which is constant always.