Answer:
The centripetal acceleration will be "21.785 m/s²".
Explanation:
The given values are:
Time,
t = 0.85 seconds
Length of rope,
r = 0.40 m
Mass of ball,
m = 0.80 kg
As we know,
⇒ 
On substituting the values, we get
⇒ 
⇒ 
⇒ 
The centripetal acceleration will be:
⇒ 
⇒ 
⇒ 
⇒ 
Explanation:
It is given that,
Frequency of vibration, f = 215 Hz
Amplitude, A = 0.832 mm
(a) Let T is the period of this motion. It is given by the following relation as :



(b) Speed of sound in air, v = 343 m/s
It can be given by :




Hence, this is the required solution.
Claim 2: Molecules speed up when they get energy from other molecules and slow down when they give energy to other molecules.
Energy can’t be destroyed (stated in claim 1) so claim 2 is more than likely to be correct
Cooking and Serving. Cook raw shell eggs that are broken for immediate preparation and service to heat all parts of the food to a temperature of 63°C<span> (</span>145°F<span>) for 15 seconds</span>
Answer:
The outline of the energy transfer are;
a) Kinetic energy → Clockwork spring → Potential energy
b) Potential energy in clockwork car → Clockwork spring coil unwound → Clockwork car run
c) Chemical potential energy → Batteries in the car → Electric motors → Kinetic energy
Please find attached the drawings of the energy transfer created with MS Visio
Explanation:
The energy transfer diagrams are diagrams that can be used to indicate the part of a system where energy is stored and the form and location to which the energy is transferred
a) The energy transfer diagram for the winding up a clockwork car is given as follows;
Mechanical kinetic energy is used to wind up (turn) the clockwork car such that the kinetic energy is transformed into potential energy and stored in the wound up clockwork as follows;
Kinetic energy → Clockwork spring → Potential energy
b) Letting a wound up clockwork car run results in the conversion of mechanical potential energy into kinetic (energy due tom motion) energy as follows;
Potential energy in clockwork car → Clockwork spring coil unwound → Clockwork car run
c) The energy stored in the battery of a battery powered car is chemical potential energy. When the battery powered car runs, the chemical potential energy produces an electromotive force which is converted into kinetic energy as electric current flows from the batteries
Therefore, we have;
Chemical potential energy → Batteries in the car → Electric motors → Kinetic energy