Answer:
Mechanical
Explanation:
Electromagnetic waves are waves that have no medium to travel whereas mechanical waves need a medium for its transmission.
Answer:
2.2 µm
Explanation:
For constructive interference, the expression is:
Where, m = 1, 2, .....
d is the distance between the slits.
Given wavelength = 597 nm
Angle,
= 15.8°
First bright fringe means , m = 1
So,
Also,
1 nm = 10⁻⁹ m
1 µm = 10⁻⁶ m
So,
1 nm = 10⁻³ nm
Thus,
<u>Distance between slits ≅ 2.2 µm</u>
The forward force you exert on the fish and your backward action will allow you to reach the shore.
<h3>
Newton's third law of motion</h3>
Newton's third law of motion states that for every action, there is an equal and opposite reaction.
Fa = -Fb
Let's assume the fish is held in the hook, this will give you the opportunity to throw the fish forward while still holding it.
When the the fish is thrown forward, you will move backwards with an equal force based on Newton's third law. Your backward momentum towards the shore will help to maintain equal linear momentum between you and the fish.
Thus, this forward force of the fish and your backward action will allow you to reach the shore.
Learn more Newton's third law of motion here: brainly.com/question/25998091
Answer:
≈ 22¢
Explanation:
240 / 1000 = 0.240 kV
0.240 kV(2.5 A)(3 hr) = 1.8 kW•hr
1.8 kW•hr($0.12/kW•hr) = $0.216
Answer and Explanation:
a. An oxygen-filled balloon is not able to float in the air, because the oxygen inside the balloon is of the same density, that is, the same "weight" as the oxygen outside the balloon and present in the atmosphere. The balloon can only float if the gas inside it is less dense than atmospheric oxygen. Helium gas is less dense than atmospheric gas, so if a balloon is filled with helium gas, that balloon will be able to float because of the difference in density.
b. The ship is able to float in the water because its steel construction is hollow and full of air. This makes the average density of this ship less than the density of water, which makes the ship lighter than water and for this reason, this ship is able to float. In addition, the ship is partially immersed, allowing the weight of the ship on the water to counteract the buoyant force that the water promotes on the ship. Weight and buoyant are two opposing forces that keep the ship afloat.