Answer:
Explanation: nigerian what
Answer:
a = 3.61[m/s^2]
Explanation:
To find this acceleration we must remember newton's second law which tells us that the total sum of forces is equal to the product of mass by acceleration.
In this case we have:
![F = m*a\\\\m=mass = 3.6[kg]\\F = force = 13[N]\\13 = 3.6*a\\a = 3.61[m/s^2]](https://tex.z-dn.net/?f=F%20%3D%20m%2Aa%5C%5C%5C%5Cm%3Dmass%20%3D%203.6%5Bkg%5D%5C%5CF%20%3D%20force%20%3D%2013%5BN%5D%5C%5C13%20%3D%203.6%2Aa%5C%5Ca%20%3D%203.61%5Bm%2Fs%5E2%5D)
Answer:
Frequency of the wave is 3.8 hertz.
Explanation:
It is given that, the sinusoidal wave has following wave equation as :
![y(x,t)=(2.5\ m)sin[(3\ m^{-1})x-(24\ s^{-1})t+\pi/2]](https://tex.z-dn.net/?f=y%28x%2Ct%29%3D%282.5%5C%20m%29sin%5B%283%5C%20m%5E%7B-1%7D%29x-%2824%5C%20s%5E%7B-1%7D%29t%2B%5Cpi%2F2%5D)
The general equation for the sinusoidal wave is :

Where
A is the amplitude
k is the constant
is the angular frequency
is the phase difference
Since, 


or
f = 3.8 Hz
So, the frequency of the wave is 3.8 hertz. Hence, this is the required solution.
From tables, the speed of sound at 0°C is approximately
V₁ = 331 m/s (in air)
V₃ = 5130 m/s (in iron)
Distance traveled is
d = 100 km = 10⁵ m
Time required to travel in air is
t₁ = d/V₁ = 10⁵/331 = 302.12 s
Time required to travel in iron is
t₂ = d/V₂ = 10⁵/5130 = 19.49 s
The difference in time is
302.12 - 19.49 = 282.63 s
Answer: 283 s (nearest second)