Windmills run on the principle of mechanical energy and work. Moving air (wind) possesses some amount of energy in the form of kinetic energy (due to motion). This energy gives the air the ability to do work on the blades of the fan.
The magnitude of force on the elevator cable that would be needed to lower the cat/elevator pair is 198 Newton.
<u>Given the following data:</u>
- Acceleration = 2

To determine the magnitude of force on the elevator cable that would be needed to lower the cat/elevator pair, we would apply Newton's Second Law of Motion:
First of all, we would calculate the total mass of the cat/elevator pair.

Total mass = 99 kilograms
Mathematically, Newton's Second Law of Motion is given by this formula;

Substituting the given parameters into the formula, we have;

Net force = 198 Newton
Read more here: brainly.com/question/24029674
Answer:
The stress is calculated as 
Solution:
As per the question:
Length of the wire, l = 75.2 cm = 0.752 m
Diameter of the circular cross-section, d = 0.560 mm = 
Mass of the weight attached, m = 25.2 kg
Elongation in the wire, 
Now,
The stress in the wire is given by:
(1)
Now,
Force is due to the weight of the attached weight:
F = mg = 
Cross sectional Area, A = 
Using these values in eqn (1):
Answer:
2872.8 N
Explanation:
We have the following information
m =n72kg
Δy = 18m
t = 0.95s.
From here we use the equation
Δy=1/2at2 in order to solve for the acceleration.
So a
=( 2x 18m)/(0.95s²)
= 36/0.9025
= 39.9m/s2.
From there we use the equation
F = ma
F=(72kg) x (39.9)
= 2872.8N.
2872.8N is the average net force exerted on him in the barrel of the cannon.
Thank you!