Answer:
n l m
����������������������������������
1 0 0 1s 1 2 2
����������������������������������
2 0 0 2s 1 2
2 1 1,0,-1 2p 3 6 8
����������������������������������
3 0 0 3s 1 2
3 1 1,0,-1 3p 3 6
3 2 2,1,0,-1,-2 3d 5 10 18
����������������������������������
4 0 0 4s 1 2
4 1 1,0,-1 4p 3 6
4 2 2,1,0,-1,-2 4d 5 10
4 3 3,2,1,0,-1,-2,-3 4f 7 14 32
Explanation:
Answer:
In any ecosystem, organisms and populations with similar requirements for food, water, oxygen, or other resources may compete with each other for limited resources, access to which consequently constrains their growth and reproduction. Growth of organisms and population increases are limited by access to resources.
The total volume of water that would be removed will be 75 mL
<h3>Dilution equation</h3>
Using the dilution equation:
M1V1 = M2V2
In this case, M1 = 500 mL, V1 = 10.20 M, M2 = 12 M
Substitute:
V2 = 500 x 10.20/12
= 425 mL
The final volume in order to arrive at 12 M HNO3 would be 425 mL from the initial 500 mL. Thus, the total amount of water that will be removed by evaporation can be calculated as:
500 - 425 = 75 mL
More on dilution can be found here: brainly.com/question/7208939
The equilibrium expression for the reaction; C(s) + O₂(g) ------->CO₂(g) is [CO2]/[C] [O2] option C.
<h3>What is the equilibrium expression?</h3>
The equilibrium expression shows how much of the reactants are converted into products. If the equilibrium constant is large and positive, most of the reactants have been converted into products.
Thus, the equilibrium expression for the reaction; C(s) + O₂(g) ------->CO₂(g) is [CO2]/[C] [O2] option C.
Learn more about equilibrium constant:brainly.com/question/10038290
#SPJ1
Answer:
specific heat = 0.951 j/g·°C
Explanation:
Heat flow equation => q = m·c·ΔT
q = heat flow = 4817 joules
m = mass in grams = 140 grams Aluminum
c = specific heat = ?
ΔT = Temperature Change in °C = 98.4°C - 62.2°C = 36.2°C
q = m·c·ΔT => c = q/m·ΔT = 4817j/(140g)(36.2°C) = 0.951 j/g·°C