Answer:
doppler shift's formula for source and receiver moving away from each other:
<em>λ'=λ°√(1+β/1-β)</em>
Explanation:
acceleration of spaceship=α=29.4m/s²
wavelength of sodium lamp=λ°=589nm
as the spaceship is moving away from earth so wavelength of earth should increase w.r.t increasing speed until it vanishes at λ'=700nm
using doppler shift's formula:
<em>λ'=λ°√(1+β/1-β)</em>
putting the values:
700nm=589nm√(1+β/1-β)
after simplifying:
<em>β=0.17</em>
by this we can say that speed at that time is: v=0.17c
to calculate velocity at an acceleration of a=29.4m/s²
we suppose that spaceship started from rest so,
<em>v=v₀+at</em>
where v₀=0
so<em> v=at</em>
as we want to calculate t so:-
<em>t=v/a</em> v=0.17c ,c=3x10⁸ ,a=29.4m/s²
putting values:
=0.17(3x10⁸m/s)/29.4m/s²
<em>t=1.73x10⁶</em>
Answer:
The z-component of the force is
Explanation:
From the question we are told that
The charge on the particle is
The magnitude of the magnetic field is 
The velocity of the particle toward the x-direction is 
The velocity of the particle toward the y-direction is

The velocity of the particle toward the z-direction is

Generally the force on this particle is mathematically represented as

So we have

substituting values
So the z-component of the force is
Note : The cross-multiplication template of unit vectors is shown on the first uploaded image ( From Wikibooks ).
Answer:
Rest and motion are the relative terms because they depend on the observer's frame of reference. So if two different observers are not at rest with respect to each other, then they too get different results when they observe the motion or rest of a body.
Answer:
See Explanation
Explanation:
a) We know that;
v = λf
Where;
λ = wavelength of the wave
f = frequency of the wave
v = velocity of the wave
So;
T = 2 * 2.10 s = 4.2 s
Hence f = 1/4.2 s
f = 0.24 Hz
The wavelength = 6.5 m
Hence;
v = 6.5 m * 0.24 Hz
v = 1.56 m/s
b)The amplitude of the wave is;
A = 0.600 m/2 = 0.300 m
c) Since the wave speed does not depend on the amplitude of the wave then the answer in (a) above remains the same
Where d = 0.30 m
A = 0.30 m/2 = 0.15 m
The correct answer is letter A. 6 millimeters. <span>If an object 18 millimeters high is placed 12 millimeters from a diverging lens and the image is formed 4 millimeters in front of the lens, the height of the image is 6 millimeters.
</span>
Solution:
18 / x = 12 / 4
12x = 72
x = 6mm