To determine mass of the given number of atoms of mercury, we need a factor that would relate the number of atoms to number of moles. In this case, we use the Avogadro's number. It is a <span>number that represents the
number of units in one mole of any substance. This has the value of 6.022 x
10^23 units / mole. The number of units could be atoms, molecules, ions or electrons. To convert into mass, we use the given amu of mercury since it is equal to grams per mole. We calculate as follows:
</span>3.0 x 10^10 atoms ( 1 mol / 6.022 x 10^23 atoms ) ( 200.59 g / 1 mol ) = 9.99x10^-12 g Hg
I am positive it is solar energy
1.
V = 200 mL (volume)
c = 3 M = 3 mol/L (concentration)
First we convert mL to L:
200 mL = 0.2 L
Then we calculate the moles using the formula: n = V × c = 0.2 L × 3 mol = 0.6 mol
Finally, we just use the molar mass of CaF2 to calculate the actual mass:
molar mass = 78 g/mol
The formula is: m = n × mm (mass = moles × molar mass)
m = 0.6 mol × 78 g/mol = 46.8 g
2.
For this question the steps are exactly like the first question.
V = 50mL = 0.05 L
c = 12 M = 12 mol/L
n = V × c = 0.05 L × 12 mol/L = 0.6 mol
molar mass (HCl) = 36.5 g/mol
m = n × mm = 0.6 mol × 36.5 g/mol = 21.9 g.
3.
The steps for this question are the opposite way.
m(K2CO3) = 250 g
molar mass = 138 g/mol
n = m ÷ mm = 1.81 mol
c = 2 mol/L
V = n ÷ c = 1.81 mol ÷ 2 mol/L = 0.905 L = 905 mL
10 atoms. If there are 10 in the reactants you need the same number in the products
Answer:
all together you have 13
Explantation:
you have to add all them together