Answer:

Explanation:
We are asked to find how many moles are in 4.8 × 10²³ fluorine atoms. We convert atoms to moles using Avogadro's Number or 6.022 × 10²³. This is the number of particles (atoms, molecules, formula units, etc.) in 1 mole of a substance. In this case, the particles are atoms of fluorine.
We will convert using dimensional analysis and set up a ratio using Avogadro's Number.

We are converting 4.8 × 10²³ fluorine atoms to moles, so we multiply the ratio by this number.

Flip the ratio so the units of atoms of fluorine cancel each other out.


Condense into 1 fraction.

Divide.

The original measurement of atoms has 2 significant figures, so our answer must have the same. For the number we found, that is the hundredths place. The 7 in the thousandths tells us to round the 9 in the hundredths place up to a 0. Then, we also have to round the 7 in the tenths place up to an 8.

4.8 × 10²³ fluorine atoms are equal to <u>0.80 moles of fluorine.</u>
10.92N
Force = mass x acceleration
4.2kg x 1.6m/s^2 = 10.92N
Answer: 1.2642*10²⁵ on both sides
Explanation:
First check how many moles are there on each side.
Since this is a balanaced equataion the number of moles on each side is the same thus the number of atoms is also same on both sides
There are 3 moles of carbon and 8 moles of hydrogen in C3H8
and 2 moles of oxygen in O2 but there 5 infront so 2*5 is 10
Number of moles on the right is 10+8+3 = 21
Now use Avogrado's constant
21 Moles* (6.02*10²³)/Mol
= 21*6.02*10²³
= 1.2642*10²⁵
Well you didn’t post any but I’m hoping that either plastic, lead, wood, glass, or paper, are an option.
Answer:
After Eris was discovered, they had to decide whether Eris was a planet or not. If they decided it wasn't a planet, they had to also decide whether Pluto should be counted as a planet since Eris and Pluto were quite similar. They were the same size, and they were both part of the Kuiper Belt.
Explanation: