Frequency is a measure of hertz
<em>c</em> = 1.14 mol/L; <em>b</em> = 1.03 mol/kg
<em>Molar concentration
</em>
Assume you have 1 L solution.
Mass of solution = 1000 mL solution × (1.19 g solution/1 mL solution)
= 1190 g solution
Mass of NaHCO3 = 1190 g solution × (7.06 g NaHCO3/100 g solution)
= 84.01 g NaHCO3
Moles NaHCO3 = 84.01 g NaHCO3 × (1 mol NaHCO3/74.01 g NaHCO3)
= 1.14 mol NaHCO3
<em>c</em> = 1.14 mol/1 L = 1.14 mol/L
<em>Molal concentration</em>
Mass of water = 1190 g – 84.01 g = 1106 g = 1.106 kg
<em>b</em> = 1.14 mol/1.106 kg = 1.03 mol/kg
3.37 x 10¹⁰ molecules
Explanation:
Given parameters:
Volume of water = 1pL = 1 x 10⁻¹²L
Density of water = 1.00g/mL = 1000g/L
Unknown:
Number of water molecules = ?
Solution:
To solve this problem, we first find the mass of the water molecule in the inkjet.
Mass of water = density of water x volume of water
Then, the number of molecules can be determined using the expression below:
number of moles = 
Number of molecules = number of moles x 6.02 x 10²³
Solving:
Mass of water = 1 x 10⁻¹² x 1000 = 1 x 10⁻⁹g
Number of moles:
Molar mass of H₂O = 2 + 16 = 18g/mol
Number of moles =
= 5.6 x 10⁻¹⁴moles
Number of molecules = 5.6 x 10⁻¹⁴ x 6.02 x 10²³ = 33.7 x 10⁹
= 3.37 x 10¹⁰ molecules
Learn more:
Number of molecules brainly.com/question/4597791
#learnwithBrainly
The substance is followed by H2O
Answer:
I prob can bc I'm a bad b*tch
lol