Question: Baking a Cake Without Flour.
Hypothesis: I think that when I remove the flour from the standard cake recipe, I'll end up with a flat but tasty cake.
Procedure: I baked two cakes during my experiment. For my control, I baked a cake following a normal recipe. I used the Double Fudge Cake recipe on page 292 of the Betty Crocker Cookbook. For my experimental cake, I followed the same recipe but left out the flour. I first obtained a 2-quart mixing bowl.
Results: My control cake, which I cooked for 25 minutes, measured 4 cm high. Eight out of ten tasters that I picked at random from the class found it to be an acceptable dessert. After 25 minutes of baking, my experimental cake was 1.5 cm high and all ten tasters refused to eat it because it was burnt to a crisp.
What did I learn?/Conclusion: Since the experimental cake burned, my results did not support my hypothesis. I think that the cake burned because it had less mass, but cooked for the same amount of time. I propose that the baking time be shortened in subsequent trials.
-
I hope this helped :))
It would cause a drop <span>but I am not sure double check other answers </span>
density is mass/volume so we do
.115/.000265
433.962 g/mL
Answer:
They would produce a repulsive force to another
Explanation:
A positive particle approaching another positive particle will repulse it.
According to coulomb's law "like charges repel one another and unlike charges attract".
A charge is an intrinsic property of any matter.
When like charges e.g positive and positive or negative and negative charges are in the vicinity of one another, they repel each other.
When unlike charges; positive and negative are brought together, they simply attract one another.
Therefore, we expect that a positive particle approaching another positive particle will repel one another.
Answer:
212 degrees F, and 100 degrees C.
Explanation:
If the temperature is held constant (which requires some heat input, since evaporation cools things) the liquid will all evaporate. If the temperature is much above 212 F, the water will boil. That means that it wont just evaporate from the surface but will form vapor bubbles, which then grow, inside the liquid itself. :)