Basing on the information given, we can calculate the new weight of the object by the following given:current weight = 20 Ng = 10m/s2
20N/4 = 5N
Thank you for your question. Please don't hesitate to ask in Brainly your queries.
<h2>
Answer: 56.718 min</h2>
Explanation:
According to the Third Kepler’s Law of Planetary motion<em> </em><em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
(1)
Where;
is the Gravitational Constant and its value is
is the mass of Mars
is the semimajor axis of the orbit the spacecraft describes around Mars (assuming it is a <u>circular orbit </u>and a <u>low orbit near the surface </u>as well, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
(2)
(3)
(4)
Finally:
This is the orbital period of a spacecraft in a low orbit near the surface of mars
Work of the force = 10 N
Time required for the work = 50 sec
Height = 7 m
We are given with the value of work and time in the question.
Substitute the values in the formula of power and then you'll get the power required.
We know that,
w = Work
p = Power
t = Time
By the formula,
Given that,
Work (w) = 7 m = 70 Joules
Time (t) = 50 sec
Substituting their values,
p = 70/50
p = 1.4 watts
Therefore, the power required is 1.4 watts.
Hope it helps!
Answer:
Inductance, L = 0.0212 Henries
Explanation:
It is given that,
Number of turns, N = 17
Current through the coil, I = 4 A
The total flux enclosed by the one turn of the coil, 
The relation between the self inductance and the magnetic flux is given by :


L = 0.0212 Henries
So, the inductance of the coil is 0.0212 Henries. Hence, this is the required solution.
<h2>Because kinetic energy is proportional to the velocity squared, increases in velocity will have an exponentially greater effect on translational kinetic energy. Doubling the mass of an object will only double its kinetic energy, but doubling the velocity of the object will quadruple its velocity.</h2>