The total momentum before and after the collision must be conserved.
The total momentum before the collision is:

where m1 and m2 are the masses of the two players, and

and

their initial velocities. Both are considered with positive sign, because the two players are running toward the same direction.
The final momentum is instead

because now the two players are moving together with a total mass of (m1+m2) and final speed vf.
By requiring that the momentum is conserved

we can calculate vf, the post-collision speed:


and the direction is the same as the direction of the players before the collision.
To solve this problem we can use the concepts related to the change of flow of a fluid within a tube, which is without a rubuleous movement and therefore has a laminar fluid.
It is sometimes called Poiseuille’s law for laminar flow, or simply Poiseuille’s law.
The mathematical equation that expresses this concept is

Where
P = Pressure at each point
r = Radius
Viscosity
l = Length
Of all these variables we have so much that the change in pressure and viscosity remains constant so the ratio between the two flows would be

From the problem two terms are given


Replacing we have to



Therefore the ratio of the flow rate through capillary tubes A and B is 1/32
Answer:
resistances is inversely proportional to the area of cross section of the conductor
Answer:
point of support on which a lever rotates.
Explanation:
The fulcrum is the point of support on which a lever rotates. Fulcrum is a pivotal part of simple machines.
The fulcrum provides the platform for a lever to torque.
- The force that opposes motion by the applied force is termed the frictional force.
- Friction is a force that opposes motion.
- The stored energy of an object is its potential energy.
- The potential energy is the energy due to the position of a body.
- The distance an object moves when doing work is termed its displacement.