Answer:
<em>a. The rock takes 2.02 seconds to hit the ground</em>
<em>b. The rock lands at 20,2 m from the base of the cliff</em>
Explanation:
Horizontal motion occurs when an object is thrown horizontally with an initial speed v from a height h above the ground. When it happens, the object moves through a curved path determined by gravity until it hits the ground.
The time taken by the object to hit the ground is calculated by:

The range is defined as the maximum horizontal distance traveled by the object and it can be calculated as follows:

The man is standing on the edge of the h=20 m cliff and throws a rock with a horizontal speed of v=10 m/s.
a,
The time taken by the rock to reach the ground is:


t = 2.02 s
The rock takes 2.02 seconds to hit the ground
b.
The range is calculated now:

d = 20.2 m
The rock lands at 20,2 m from the base of the cliff
You have:
A1= 0.15 m²
A2=6.0 m²
F1=130.0 N
To solve this problem you must use the pressure formula, as below:
P1=P2
F1/A1=F2/A2
Then, you have:
m2=A2xF1/A1xg
g=9.81 m/s² (This is the acceleration of gravity)
When you substitute the values in m2=A2xF1/A1xg, you obtain:
m2=(0.60 m² x 130.0 N)/(0.15 m² x 9.81 m/s²)
The answer is:
m2=530 Kg
Answer:
Since strong nuclear forces involve only nuclear particles (not electrons, bonds, etc) items 3 and 4 are eliminated.
Again item 2 refers to bonds between atoms and is eliminated.
This leaves only item 1.
Nuclear forces are very short range forces between components of the nucleus.
Weak nuclear forces are trillions of times smaller than strong forces.
Gravitational forces are much much smaller than the weak nuclear force.
The answer would be solids
<h3>Given</h3>


<h3>To Find</h3>

<h3>Solution </h3>












Total Distance between them after
is 