1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blababa [14]
3 years ago
14

Consider two interconnected tanks as shown in the figure above. Tank 1 initial contains 90 L (liters) of water and 290 g of salt

, while tank 2 initially contains 60 L of water and 245 g of salt. Water containing 50 g/L of salt is poured into tank1 at a rate of 3.5 L/min while the mixture flowing into tank 2 contains a salt concentration of 40 g/L of salt and is flowing at the rate of 4 L/min. The two connecting tubes have a flow rate of 6 L/min from tank 1 to tank 2; and of 2.5 L/min from tank 2 back to tank 1. Tank 2 is drained at the rate of 7.5 L/min. You may assume that the solutions in each tank are thoroughly mixed so that the concentration of the mixture leaving any tank along any of the tubes has the same concentration of salt as the tank as a whole. (This is not completely realistic, but as in real physics, we are going to work with the approximate, rather than exact description. The 'real' equations of physics are often too complicated to even write down precisely, much less solve.) How does the water in each tank change over time
Physics
1 answer:
Harlamova29_29 [7]3 years ago
3 0

Let A_1 be the amount of salt in tank 1 at time t, and A_2 the amount of salt in the tank 2.

The volume of solution in either tank stays constant. In tank 1, at time t (min) we have

90\,\mathrm L+\underbrace{\left(3.5\dfrac{\rm L}{\rm min}-6\dfrac{\rm L}{\rm min}+2.5\dfrac{\rm L}{\rm min}\right)}_0t=90\,\mathrm L

In tank 2,

60\,\mathrm L+\underbrace{\left(4\dfrac{\rm L}{\rm min}+6\dfrac{\rm L}{\rm min}-2.5\frac{\rm L}{\rm min}-7.5\frac{\rm L}{\rm min}\right)}_0t=60\,\mathrm L

Then the concentration of salt in tanks 1 and 2 at any given time is \dfrac{A_1\,\rm g}{90\,\rm L} and \dfrac{A_2\,\rm g}{60\,\rm L}.

The net rate of change of the amount of salt in tanks 1 and 2 follows a simple rule:

\dfrac{\mathrm dA_i}{\mathrm dt}=(\text{rate in})-(\text{rate out})

Each rate is in units of g/min. Each L coming in or going out contributes or removes some salt depending on the flow rate (L/min) and concentration (g/L) of the solution in either tank. For tank 1, we have

\text{rate in}=\left(50\dfrac{\rm g}{\rm L}\right)\left(3.5\dfrac{\rm L}{\rm min}\right)+\left(\dfrac{A_2}{60}\dfrac{\rm g}{\rm L}\right)\left(2.5\dfrac{\rm L}{\rm min}\right)

\text{rate out}=\left(\dfrac{A_1}{90}\dfrac{\rm g}{\rm L}\right)\left(6\dfrac{\rm L}{\rm min}\right)

Then the amount of salt in tank 1 has rate of change (ignoring units)

\dfrac{\mathrm dA_1}{\mathrm dt}=-\dfrac{A_1}{15}+\dfrac{A_2}{24}+175

A similar breakdown for tank 2 shows a rate of change of

\dfrac{\mathrm dA_2}{\mathrm dt}=\dfrac{A_1}{15}-\dfrac{A_2}6+160

In matrix form, the system is described by

\begin{pmatrix}A_1\\A_2\end{pmatrix}'=\begin{pmatrix}-\frac1{15}&\frac1{24}\\\frac1{15}&-\frac16\end{pmatrix}\begin{pmatrix}A_1\\A_2\end{pmatrix}+\begin{pmatrix}175\\160\end{pmatrix}

You can solve this with the usual eigenvalue method and method of undetermined coefficients. You should get a general solution of

\begin{pmatrix}A_1\\A_2\end{pmatrix}=C_1\begin{pmatrix}5\\-6-2\sqrt{19}\end{pmatrix}e^{\frac{-7+\sqrt{19}}{60}t}+C_2\begin{pmatrix}5\\-6+2\sqrt{19}\end{pmatrix}e^{\frac{-7-\sqrt{19}}{60}t}+\begin{pmatrix}4300\\2680\end{pmatrix}

Then use the initial values A_1(0)=290 and A_2(0)=245 to solve for C_1,C_2 and find the particular solution.

You might be interested in
If a project team decided that a drugstore would earn the LT Credit—LEED for Neighborhood Development Location, what other Locat
DaniilM [7]

Answer:

None

Explanation:

It'll be impossible for the project to be eligible for any other LT credits because it can't double dip.

Double dip refers to obtaining money from two sources at the same time or by two separate accounting methods.

This is often regarded, unethical.

8 0
3 years ago
A car traveling in a straight line has a velocity of 6m/s at some instant. After 6.32s its velocity is 13.2m/s . What is the ave
NeX [460]
Average acceleration  =  (change in speed) / (time for the change) .

Average acceleration  =  (13.2 - 6) / (6.32) = 7.2 / 6.32 = about  <em>1.139... m/s²</em> .
8 0
2 years ago
For which question could a testable hypothesis be developed?
Mandarinka [93]
I believe it’s B; Theories may be proven to be true and become laws.
A would make sense if we were talking about hypotheses however, we’re not.
8 0
3 years ago
What are (a) the kinetic energy, (b) the rest energy, and (c) the total energy of a 1.50 g particle with a speed of 0.600 c ?
MAVERICK [17]
Kinetic energy = 1/2 m v^2 = 1/2 x1.5 x10^-3 x 0.36 
5 0
2 years ago
Calculate the kinetic energy in joules of a 1200 kg automobile moving at 18 m/s .
vodka [1.7K]

Answer:

194,400 joules of kinetic energy.

Explanation:

Remember that to calculate the Kinetic energy you need to use the next formula:

Ke=\frac{1}{2}Mass*Velocity^2

We know that Mass= 1200 kg and velocity is 18m/s, so we insert those values into the formula:

Ke=\frac{1}{2}Mass*Velocity^2\\Ke=\frac{1}{2}1200kg*(18m/s)^2\\Ke=194,400 joules

So the kinetic energy of a car moving at 18m/s with a mass of 1200 kg would be 194,400 joules.

7 0
3 years ago
Read 2 more answers
Other questions:
  • Please help me with this. Finding speed.
    15·2 answers
  • How much force is required to move a sled 5 meters if a person uses 60 j of work? 300N 12N 65N 30N
    6·1 answer
  • Properties of macroscopic systems! Tummarize your present understanding of the properties of macroscopic systems.
    11·1 answer
  • How many stars can be seen without a telescope on earth
    11·1 answer
  • What is the life cycle of a eukaryotic cell called?
    15·1 answer
  • Which of the following is not a way that astronomers can find how much dark matter there is in cluster of galaxies?
    14·1 answer
  • what conversion factors should be used to convert 18 mi/hr to ft/sec? what conversion factors should be used to convert 18 mi/hr
    6·1 answer
  • Convert 41.3 kilocalories into joules.
    5·1 answer
  • Which diagram shows the most likely effect when a rock is weathered by water flowing over its entire surface
    13·1 answer
  • Brittle- would break when struck with force *<br> A-Metal<br> B-Nonmetal<br> C-Metalloid
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!