Answer:
A)Explanation:
Let object distance be u.
Image distance v = 1.06 - u
Focal length = 20 cm = .2 m
Applying lens formula
1 / v - 1 / u = 1 / f
1 /( 1.06-u) - 1 / u = 1 / .2
5 u² -3.3u - 1.06 =0
It will have two roots
u₁ = .1636 m, u₂ = .8964 m
B ) Magnification
= u = .1636m , v = .8964m
m = .8964 / .1636 = 5.48
C ) When u = .8964m ,v = .1634m
m = .1634 / .8964
=.182
Answer:
The maximum range
m
Explanation:
Given,
The initial velocity of the car, u = 30 m/s
The height of the cliff, h = 50 m
Let the car drives off the cliff with a horizontal velocity of 30 m/s.
The formula for a projectile that is projected from a height h from the ground is given by the relation
m
Where,
g - acceleration due to gravity
Substituting the values in the above equation
= 132.72 m
Hence, the car lands at a distance,
m
Answer:
<u>We are given: </u>
initial velocity (u) = 0 m/s
final velocity (v) = 10 m/s
displacement (s) = 20 m
acceleration (a) = a m/s/s
<u>Solving for 'a'</u>
From the third equation of motion:
v² - u² = 2as
replacing the variables
(10)² - (0)² = 2(a)(20)
100 = 40a
a = 100 / 40
a = 2.5 m/s²