Answer: The greater an object's mass, the more gravitational force it exerts.
Explanation: So, to begin answering your question, Earth has a greater gravitational pull than the moon simply because the Earth is more massive. Sorry if I get this wrong. I am in 5th grade! ♥
Answer:
b. a massive collapsed star
Explanation:
A black hole in the universe is nothing but a massive collapsed star. When the size of the star crosses a particular limit it cannot holds its mass and it collapses under it own self. This is called supernova. A black hole is actually a region in space where gravity is so strong that even light cannot escape through it. Gravity so strong because the matter has been pressed into a tiny space. hence option b is correct
Answer:
The second law of thermodynamics states in an isolated system, the entropy (the amount of thermal energy that cannot be converted into mechanical work, also known as the amount of disorder) always increases, therefore, an isolated system always require an external input (new sources) of energy for there to be orderliness or for the available energy of the system to remain constant or increase
Explanation:
Answer:
The number of oxygen molecules in the left container greater than the number of hydrogen molecules in the right container.
Explanation:
Given:
Molar mass of oxygen, 
Molar mass of hydrogen, 
We know ideal gas law as:

where:
P = pressure of the gas
V = volume of the gas
n= no. of moles of the gas molecules
R = universal gs constant
T = temperature of the gas
∵
where:
m = mass of gas in grams
M = molecular mass of the gas
∴Eq. (1) can be written as:


as: 
So,

Now, according to given we have T,P,R same for both the gases.




∴The molecules of oxygen are more densely packed than the molecules of hydrogen in the same volume at the same temperature and pressure. So, <em>the number of oxygen molecules in the left container greater than the number of hydrogen molecules in the right container.</em>