I think the answer would be A. Density because many headlights could have the same density, but the rest of the analysis techniques would be specific to that crime.
Answer:
In a closed system, the total energy is conserved or remains the same as energy transformations take place.
Explanation:
The law of conservation of energy states that energy cannot be created or destroyed but can be transformed from one form to another.
This law of conservation of energy applies only to a closed system. A closed system is a system which does not exchange energy with its surroundings. All forms of energy conversions occurring within a closed system does not result in an increase or decrease of the total energy of the system, rather, energy remains constant. For example, the universe is a closed system in that all forms of energy conversions occurs within it and energy is not exchanged with an external environment. However, the earth is not a closed system as some of the energy it receives from the sun can be radiated out into space. Since it's an open system, its total energy can change.
-- If velocity is constant, then there is no net force
on the chair.
-- If there is no net force on the chair, then friction
must exactly balance out your push.
-- The force of friction is exactly equal in magnitude
to your push, and in exactly the opposite direction.
Lifting hands and the down by one student at a time best describe the presentation of the transverse wave by students. Option D is correct.
<h3>
What is a Transverse wave?</h3>
- The wave in which the oscillation of particles is is perpendicular to the direction of energy transfer.
- The students can make a transverse wave by raising their hands up and then down, one student at a time.
- The raised hand represents the oscillation of particles while the sequence of the raising hand represents the direction of energy transfer.
Therefore, lifting hands and the down by one student at a time best describe the presentation of the transverse wave by students.
Learn more about Transverse waves:
brainly.com/question/3813804