Answer:
11250 N
Explanation:
From the question given above, the following data were obtained:
Normal force (R) = 15000 N
Coefficient of static friction (μ) = 0.75
Frictional force (F) =?
Friction and normal force are related by the following equation:
F = μR
Where:
F is the frictional force.
μ is the coefficient of static friction.
R is the normal force.
With the above formula, we can calculate the frictional force acting on the car as follow:
Normal force (R) = 15000 N
Coefficient of static friction (μ) = 0.75
Frictional force (F) =?
F = μR
F = 0.75 × 15000
F = 11250 N
Therefore, the frictional force acting on the car is 11250 N
The charges are the same in absolute value, so the change of potential energy is the same. That means that the change in kinetic energy is also the same. Then:
1 = Ke/Kp = m_e *v_e^2 / m_p * v_p^2, or
v_e/v_p = sqrt( m_p/m_e),
So the speed of the electron will be sqrt( m_p/m_e) times greater than the speed of the proton
Explanation:
Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: Dry friction is a force that opposes the relative lateral motion of two solid surfaces in
Answer:
a) 5.09 seconds
b) 107.07 meters
Explanation:
a) As we know

Substituting the given values we get

It takes 5 .09 s for the motorcycle to accelerate until it catches up with the car
b)

The main (and only) purpose of the turbine in the turbo jet engine is to drive the air compressor. The turbojet engine works by compressing the air using an inlet and a compressor, then mixing the fuel with the compressed air, then passing the mixture to the combustor, then passing the high pressure air through a turbine and a nozzle.