1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irina1246 [14]
2 years ago
6

A man walking on a tightrope carries a long a pole which has heavy items attached to the two ends. If he were to walk the tight-

rope with just a pole, what difference would it make to his balance? Discuss this in terms of angular rotation, angular momentum, and moment of inertia.
Physics
1 answer:
katen-ka-za [31]2 years ago
5 0

Answer:

 I_weight = M L²

this value is much larger and with it it is easier to restore balance.I

Explanation:

When man walks a tightrope, he carries a linear velocity, this velocity is related to the angular velocity by

            v = w r

For man to maintain equilibrium needs the total moment to be zero

             ∑τ = I α

              S  τ = 0

The forces on the home are the weight of the masses, the weight of the man and the support on the rope, the latter two are zero taque the distance to the center of rotation is zero.

Therefore the moment of the masses and the open is the one that must be zero.

If the man carries only the bar, we could approximate it by two open one on each side of the axis of rotation formed by the free of the rope

              I = ⅓ m L² / 4

As the length of half the length of the bar and the mass of the bar is small, this moment is small, therefore at the moment if there is some imbalance it is difficult to recover.

If, in addition to the opening, each of them carries a specific weight, the moment of inertia of this weight is

             I_weight = M L²

this value is much larger and with it it is easier to restore balance.

You might be interested in
A taxi is travelling at 15m/s. Its driver accelerates with acceleration 3m/s^2 for 4 s. What would be the new velocity?..... pls
Aleksandr-060686 [28]

Answer:

27 m/s

Explanation:

Given:

v₀ = 15 m/s

a = 3 m/s²

t = 4 s

Find: v

v = at + v₀

v = (3 m/s²) (4 s) + (15 m/s)

v = 27 m/s

5 0
2 years ago
Read 2 more answers
A 129-kg horizontal platform is a uniform disk of radius 1.61 m and can rotate about the vertical axis through its center. A 65.
LUCKY_DIMON [66]

Answer:

Moment of inertia of the system is 289.088 kg.m^2

Explanation:

Given:

Mass of the platform which is a uniform disk = 129 kg

Radius of the disk rotating about vertical axis = 1.61 m

Mass of the person  standing on platform = 65.7 kg

Distance from the center of platform = 1.07 m

Mass of the dog on the platform = 27.3 kg

Distance from center of platform = 1.31 m

We have to calculate the moment of inertia.

Formula:

MOI of disk = \frac{MR^2}{2}

Moment of inertia of the person and the dog will be mr^2.

Where m and r are different for both the bodies.

So,

Moment of inertia (I_y_y )  of the system with respect to the axis yy.

⇒ I_y_y=I_d_i_s_k + I_m_a_n+I_d_o_g

⇒ I_y_y=\frac{M_d_i_s_k(R_d_i_s_k)^2}{2} +M_m(r_c)^2+M_d_o_g(R_c)^2

⇒ I_y_y=\frac{129(1.61)^2}{2} +65.7(1.07)^2+27.2(1.31)^2

⇒ I_y_y=289.088\ kg.m^2

The moment of inertia of the system is 289.088 kg.m^2

7 0
3 years ago
if we ignore air resistance the mass of an object does not affect the rate at which it accelerate why?​
quester [9]

Answer:

See explanation

Explanation:

The acceleration due to gravity on an object is independent of the mass of the object. This is so because, the acceleration due to gravity depends only on the radius of the earth and the mass of the earth.

As a result of this, all objects are accelerated to the same extent and should reach the ground at the same time when released from a height as long as other forces other than gravity are not at work.

5 0
3 years ago
If you wanted to increase the gravitational force between two objects what would you do
adelina 88 [10]
Double the force on the object
6 0
3 years ago
Read 2 more answers
A 50kg chandelier hangs from a ceiling suspended by a cable.
babunello [35]

Answer:

The tension force has a magnitude of 490 N, and acts vertically upward

Explanation:

The complete question is:

A 50kg chandelier hangs from a ceiling suspended by a cable. What is the Tension (magnitude and direction of the force) in the cable?

ANS:

Tension is the force applied axially by rope, chain, cable, rod, etc, as a reaction force. The direction of tension is always towards the support. Since, the support here, is ceiling.

Therefore, the direction of tension force will be <u>vertically upward</u><u>.</u>

Since the chandelier is hanging stationary, without any motion. Thus, there must not be any unbalanced force applied on it.

Hence, the tension force must be equal to the weight of chandelier.

Tension Force = Weight of Chandelier

T = W = mg

T = (50 kg)(9.8 m/s²)

<u>T =   490 N</u>

<u>Thus, the tension force has a magnitude of 490 N, and acts vertically upward</u>

6 0
3 years ago
Other questions:
  • A transverse wave on a rope is given by y(x,t)= (0.750cm)cos(π[(0.400cm−1)x+(250s−1)t]). part a part complete find the amplitude
    13·2 answers
  • Is it possible that a 60kg boy riding a BMX bike could exert more pressure on a road surface than a 2500kg truck? Explain why.
    8·1 answer
  • Insulators will:
    14·2 answers
  • If you whirl a tin can on the end of a string and the string suddenly breaks, in what direction will the can go?
    7·1 answer
  • A model airplane traveling at 5 m/s approaches you. The frequency of the hum produced by the motor is 652 Hz. Assume the speed o
    15·1 answer
  • What must be true about tow objects if heat is flowing between them?
    8·1 answer
  • Which statement describes Redi’s experiment, which helped disprove spontaneous generation?
    10·2 answers
  • Look at the graph above. It shows how three runners ran a 100 meter race
    5·2 answers
  • A dolphin can swim at a constant speed of 12.5 m/s. How
    14·2 answers
  • Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!