Answer:
the needle will direct its North South according to the magnetic field of current carrying wire.
Explanation:
A current carrying wire always has a magnetic field around it, in circular loops. This magnetic field will be either clockwise or anticlockwise depending on the direction of current.
Right hand rule tells the direction. Place the current carrying wire in your right hand with thumb pointing the direction of current. Curl of the fingers tell the direction of current.
When the needle gets in the vicinity of the field, its poles aligns itself with the field. (previous position of the compass needle has no effect on its position in the field). The north pole and south pole will be set in the direction of magnetic field.
The distance between the needle and wire does effect the strength (accuracy) of the needle position. Strong field will create strong deflection of the needle whereas when the distance from wire increases, field weakens, thus the deflection of needle will be weak.
When an object absorbs an amount of energy equal to Q, its temperature raises by

following the formula

where m is the mass of the object and

is the specific heat capacity of the material.
In our problem, we have

,

and

, so we can re-arrange the formula and substitute the numbers to find the specific heat capacity of the metal:
Answer:
(a) charge q=5.33 nC
(b) charge density σ=10.62 nC/m²
Explanation:
Given data
radius r=0.20 m
potential V=240 V
coulombs constant k=9×10⁹Nm²/C²
To find
(a) charge q
(b) charge density σ
Solution
For (a) charge q
As

For (b) charge density
As charge density σ is given as:
σ=q/(4πR²)
σ=(5.333×10⁻⁹) / (4π×(0.20)²)
σ=10.62 nC/m²
The unit of measurement of work is the Joules. B.
You may look at what group they are in
Group
1A=Group 1
2A = Group 2
3A = Group 13
4A= Group 14
5A=Group 15
6A=Group 16
7A=Group 17
The #A tells you how many valence electrons there are by the # before A. Such as Chlorine, which is in 7A, so therefore has 7 valence electrons.